Advertisement
Clinical Investigation| Volume 364, ISSUE 4, P444-453, October 2022

In-hospital mortality, length of stay, and hospitalization cost of COVID-19 patients with and without hyperkalemia

Open AccessPublished:April 28, 2022DOI:https://doi.org/10.1016/j.amjms.2022.04.029

      Abstract

      Background

      Hyperkalemia (HK) may be associated with poor clinical outcomes among COVID-19 patients. This study aimed to describe the prevalence of HK and evaluate the associations between HK and in-hospital mortality, intensive care unit (ICU) admission, length of hospital stay (LOS), and hospitalization cost among COVID-19 inpatients.

      Methods

      A retrospective cohort study was conducted using a large hospital discharge database (PINC AI Healthcare Database) for COVID-19 inpatients discharged between April 1 and August 31, 2020. HK was defined with discharge diagnosis and potassium binder use.

      Results

      Of 192,182 COVID-19 inpatients, 12% (n = 22,702) had HK. HK patients were more likely to be older (median age 67 vs 63 years), male (63% vs 50%), black (30% vs 22%), and have a history of chronic kidney disease (45% vs 16%) or diabetes mellitus (55% vs 35%) than non-HK patients (all p<.001). A significantly higher proportion of patients with HK had in-hospital mortality (42% vs 11%, p<.001) than those without HK; this was persistent after adjusting for confounders (adjusted odds ratio [aOR] 1.69, 95% confidence interval [CI]1.62-1.77). Patients with HK were also more likely to be admitted to ICU (aOR 1.05, 95% CI 1.01-1.09), incur higher cost of care (adjusted mean difference $5,389) and have longer LOS (adjusted mean difference 1.3 days) than non-HK patients.

      Conclusions

      Presence of HK was independently associated with higher in-hospital mortality, LOS, and cost of care among COVID-19 inpatients. Detecting and closely monitoring HK are recommended to improve clinical outcomes and reduce LOS and healthcare cost among COVID-19 patients.

      Key Indexing Terms

      Introduction

      Newly emerged coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for almost one million deaths in the United States (US) alone.
      JohnsHopkinsUniversity
      COVID-19 Dashboard by the Center for Systems Science and Engineering at Johns Hopkins University.
      Mortality rate was especially high among adults with advanced age and pre-existing conditions such as cardiovascular disease, diabetes mellitus (DM), hypertension, chronic lung disease, cancer, chronic kidney disease (CKD), and obesity.
      • Williamson E.J.
      • Walker A.J.
      • Bhaskaran K.
      • et al.
      Factors associated with COVID-19-related death using OpenSAFELY.
      • Wu Z.
      • McGoogan J.M.
      Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention.
      • Petrilli C.M.
      • Jones S.A.
      • Yang J.
      • et al.
      Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study.
      • Team C.C.-R.
      Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12-March 28, 2020.
      Renal complications of the disease were also closely associated with the risks of severe illness and death among COVID-19 inpatients.
      • Bowe B.
      • Cai M.
      • Xie Y.
      • et al.
      Acute kidney injury in a national cohort of hospitalized US veterans with COVID-19.
      • Cheng Y.
      • Luo R.
      • Wang K.
      • et al.
      Kidney disease is associated with in-hospital death of patients with COVID-19.
      • Cheng Y.
      • Luo R.
      • Wang X.
      • et al.
      The incidence, risk factors, and prognosis of acute kidney injury in adult patients with coronavirus disease 2019.
      • Robbins-Juarez S.Y.
      • Qian L.
      • King K.L.
      • et al.
      Outcomes for patients With COVID-19 and acute kidney injury: a systematic review and meta-analysis.
      In a systemic review, acute kidney injury (AKI) was present in 17% of the hospitalized COVID-19 patients, of which 77% had a severe illness and 52% died.
      • Robbins-Juarez S.Y.
      • Qian L.
      • King K.L.
      • et al.
      Outcomes for patients With COVID-19 and acute kidney injury: a systematic review and meta-analysis.
      For patients with AKI, the primary indication of renal replacement therapy was hyperkalemia – high serum potassium level (>5.0 mmol/L or >5.5mmol/L).
      • Kraft M.D.
      • Btaiche I.F.
      • Sacks G.S.
      • et al.
      Treatment of electrolyte disorders in adult patients in the intensive care unit.
      • Hollander-Rodriguez J.C.
      • Calvert Jr., J.F.
      Hyperkalemia.
      • Crawford A.H.
      Hyperkalemia: recognition and management of a critical electrolyte disturbance.
      • Luo J.
      • Brunelli S.M.
      • Jensen D.E.
      • et al.
      Association between serum potassium and outcomes in patients with reduced kidney function.
      • Dattani R.
      • Hill P.
      • Medjeral-Thomas N.
      • et al.
      Oral potassium binders: increasing flexibility in times of crisis.
      Not surprisingly, hyperkalemia was one of the most frequent electrolyte imbalances with an incidence of 12.5% among COVID-19 inpatients.
      • Kunutsor S.K.
      • Laukkanen J.A.
      Renal complications in COVID-19: a systematic review and meta-analysis.
      In a large cohort study of US patients with COVID-19, hyperkalemia was more frequently observed among the deceased compared to recovered patients.
      • Chen T.
      • Wu D.
      • Chen H.
      • et al.
      Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.
      ,
      • Rosenthal N.
      • Cao Z.
      • Gundrum J.
      • et al.
      Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19.
      In another recent study, serum potassium level of ≥5.0 mmol/L was associated with significantly increased 30-day mortality among COVID-19 patients independent of age, sex, history of CKD, pulse oxygen saturation, and serum creatinine.
      • Liu S.
      • Zhang L.
      • Weng H.
      • et al.
      Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan, China.
      COVID-19 inpatients are already at an increased risk of developing hyperkalemia, due to the high prevalence of congestive heart failure (CHF), DM, and CKD.
      • Rosenthal N.
      • Cao Z.
      • Gundrum J.
      • et al.
      Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19.
      Furthermore, hypertension is the most common comorbidity among COVID-19 inpatients and use of renin–angiotensin–aldosterone system (RAAS) inhibitors in these patients could lead to disturbed potassium homeostasis and elevated serum potassium levels.
      • Robbins-Juarez S.Y.
      • Qian L.
      • King K.L.
      • et al.
      Outcomes for patients With COVID-19 and acute kidney injury: a systematic review and meta-analysis.
      ,
      • Rosenthal N.
      • Cao Z.
      • Gundrum J.
      • et al.
      Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19.
      ,
      • Weir M.R.
      • Rolfe M.
      Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors.
      However, data are limited on the independent risk conferred by hyperkalemia and how RAAS inhibitors are used among hospitalized COVID-19 patients. Furthermore, no study to date has assessed the impact of hyperkalemia on healthcare resource utilization (HRU) and cost among COVID-19 inpatients. Using the largest hospital discharge database in the US, the aims of this study were: 1) to describe the prevalence of hyperkalemia, 2) to evaluate the association between hyperkalemia and in-hospital mortality, and 3) to assess the impact of hyperkalemia on HRU and cost among COVID-19 patients.

      Methods

      Study design and data source

      A retrospective cohort study was performed using PINC AI Healthcare Database (PHD, formerly known as Premier Healthcare Database). The PHD is a hospital-based, service-level, all-payer discharge database for geographically diverse inpatient and outpatient visits. Inpatient discharges in PHD represents approximately 20-25% of all inpatient admissions in the US since 2000.
      • Rosenthal N.
      • Cao Z.
      • Gundrum J.
      • et al.
      Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19.
      ,
      Premier
      Premier Healthcare Database (COVID-19): Data that Informs and Performs.
      PHD has been used by the National Institute of Health and the Centers for Disease Prevention and Control for evaluating the impact of COVID-19 on patients across the US.
      • Lavery A.M.
      • Preston L.E.
      • Ko J.Y.
      • et al.
      Characteristics of Hospitalized COVID-19 Patients Discharged and Experiencing Same-Hospital Readmission - United States, March-August 2020.
      ,
      Premier
      Premier Healthcare Database Being Used by National Institutes of Health to Evaluate Impact of COVID-19 on Patients Across the U.S.
      The standard hospital discharge files included demographic characteristics, disease states, and time-stamped log of billed items (e.g., procedures, medications, laboratory services, and diagnostic services) of patient visits and geographic location, urbanicity of served population, teaching status, and bed capacity of the hospitals.
      Premier
      Premier Healthcare Database (COVID-19): Data that Informs and Performs.
      All data were statistically deidentified and compliant with the Health Insurance Portability and Accountability Act. The study was exempted from institutional board review based on US Title 45 Code of Federal Regulations, Part 46. We did not pursue informed consent from the study participants because individuals could not be identified directly or through linked identifiers. The study followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE)
      • von Elm E.
      • Altman D.G.
      • Egger M.
      • et al.
      The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.
      reporting guideline.

      Study population

      All COVID-19-related inpatient visits were identified using the principal or secondary discharge diagnosis of COVID-19 (International Classification of Diseases, 10th Revision, Clinical Modification [ICD-10-CM] diagnosis code U07.1) between April 1 and August 31, 2020.
      CDC
      ICD-10-CM official coding and reporting guidelines April 1, 2020 through September 30, 2020.
      If the patient had multiple inpatient visits with the discharge diagnosis of COVID-19 during the study period, only the first inpatient visit (index hospitalization) was included in the analysis to represent patient-level data. Patients were only included in the study if they were 18 years old or older upon admission and did not acquire COVID-19 at the hospital (presence on admission is not equal to ‘No’).

      Exposure & outcome measures

      Hyperkalemia was identified using the principal or secondary discharge ICD-10-CM diagnosis code for hyperkalemia (E87.5) or hospital chargemaster descriptions of potassium binder use (sodium zirconium cyclosilicate, sodium polystyrene sulfonate, or patiromer).
      Main outcomes of interest were in-hospital mortality, intensive care unit (ICU) admission, hospital length of stay (LOS), and hospitalization cost during index hospitalization. Secondary outcomes included acute complications of COVID-19 during index hospitalization. In-hospital mortality was identified when the patient's discharge status was ‘expired’; ICU admission was identified when the patient incurred any room and board charges related to ICU (observations after surgery and step-down ICU were excluded). Total cost for the index hospitalization included the sum of all costs incurred by the hospital including room and board, pharmacy, laboratory, imaging, and central supply.
      For sensitivity analysis, we examined the composite measure of in-hospital mortality + referral to hospice at the time of discharge. Furthermore, we examined the association between in-hospital mortality and hyperkalemia in a subgroup of patients who developed AKI during their inpatient stay.

      Patient, visit, and hospital characteristics

      Baseline patient characteristics including age, sex, patients’ self-reported race and ethnicity, and hospital characteristics including geographical region (i.e., Midwest, Northeast, South, or West), hospital size (i.e., number of beds), urbanicity of served population (rural vs. urban) and teaching status were provided by the participating hospitals. For baseline comorbidities, Charlson-Deyo comorbidities were identified using ICD-10-CM diagnosis codes (eTable 1 in Supplement) and Charlson Comorbidity Index (CCI) score was calculated using a previously validated method.
      • Deyo R.A.
      • Cherkin D.C.
      • Ciol M.A.
      Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases.
      ,
      • Rosenthal N.
      • Cao Z.
      • Chung J.
      • et al.
      Updated coding algorithm for assessing Charlson comorbidity index using large hospital administrative data.
      In addition to Charlson-Deyo comorbidities, morbid obesity was identified using ICD-10-CM diagnosis codes (E66.01, E66.2, Z68.34-Z68.39, Z68.41-Z68.45). Comorbidities were assessed during index hospitalization and any visit to the same hospital within 180 days prior to the index hospitalization.
      The severity of illness was assessed using All Patient Refined Diagnosis Related Groups (APR-DRG) Severity of Illness categories. APR-DRG Severity of Illness is a previously validated method of estimating the extent of physiologic decompensation or organ system loss of function using four subclasses (minor, moderate, major, and extreme).
      • Averill R.F.
      • Goldfield N.I.
      • Muldoon J.
      • et al.
      A closer look at all-patient refined DRGs.
      ,
      • Romano P.S.
      • Chan B.K.
      Risk-adjusting acute myocardial infarction mortality: are APR-DRGs the right tool?.
      In addition, in-hospital dialysis was identified using ICD-10-CM diagnosis codes (Z49.xx, Z99.2) and procedure codes (5A1D70Z, 5A1D80Z, 5A1D90Z) during the index hospitalization.
      COVID-19-related medications and supplements (including dexamethasone, remdesivir, convalescent plasma, zinc, vitamin C or D) were identified using hospital chargemaster descriptions during the index hospitalization.
      FDA
      FDA's Approval of Veklury (remdesivir) for the Treatment of COVID-19 - The Science of Safety and Effectiveness.
      FDA
      FDA Cautions Against Use of Hydroxychloroquine or Chloroquine for COVID-19 Outside of the Hospital Setting or a Clinical Trial Due to Risk of Heart Rhythm Problems.
      • Group R.C.
      • Horby P.
      • Lim W.S.
      • et al.
      Dexamethasone in hospitalized patients with Covid-19 - preliminary report.
      • Thomas S.
      • Patel D.
      • Bittel B.
      • et al.
      Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 Infection: the COVID A to Z randomized clinical trial.
      • Tworek A.
      • Jaron K.
      • Uszynska-Kaluza B.
      • et al.
      Convalescent plasma treatment is associated with lower mortality and better outcomes in high risk COVID-19 patients - propensity score matched case-control study.
      In addition to COVID-19 medications, we assessed in-hospital use of hyperkalemia-related medications including RAAS inhibitors (e.g., angiotensin-converting-enzyme [ACE] inhibitors, angiotensin receptor blocker [ARB], aldosterone receptor antagonist [ARA]) and intravenous administration of insulin, diuretics, bicarbonates, and calcium gluconates.
      COVID-19-related acute complications assessed were acute ischemic heart disease, AKI, acute liver injury, acute respiratory failure, acute respiratory distress syndrome (ARDS), hypokalemia, hyponatremia, metabolic or respiratory acidosis, epileptic seizures, rhabdomyolysis, sepsis, shock, and venous thromboembolism, using ICD-10-CM diagnosis codes (eTable 2 in Supplement).

      Statistical analysis

      Descriptive statistics were used to compare baseline patient and hospital characteristics of COVID-19 patients with and without hyperkalemia. Continuous variables were reported as mean (standard deviation) or median (1st quartile, 3rd quartile) and categorical variables were reported as counts and percentages. For statistical difference, we used pooled t-test or Mann-Whitney test for continuous variables and χ2 test for categorical variables.
      For in-hospital mortality and ICU admission, we first examined the association between hyperkalemia and mortality using a multivariable logistic regression model, only adjusting for patient demographics (i.e., sex, age group, race, and ethnicity) (data not shown, available upon request). We then adjusted for patient characteristics, treatment medications and supplements, and complications. A priori covariates were factors that varied by greater than 10% across exposure groups at baseline: sex, age group, race, ethnicity, CCI category, APR-DRG category, AKI, in-hospital dialysis, ARDS, hyponatremia, acidosis, sepsis, shock, medication use (albumin, antiarrhythmic, beta blocker, blood growth factor, bronchodilator, calcium channel blocker, corticosteroid, antibiotics other than azithromycin, statin, and intravenous administration of insulin, diuretics, bicarbonates, and calcium gluconates). Final covariates were selected using backward elimination method, with significance level of p < .05 to stay in the model (ethnicity, corticosteroids, and sepsis were eliminated). AKI and CHF did not significantly modify the association between hyperkalemia and in-hospital mortality (interaction terms). Multicollinearity between covariates in the final model was tested using variance inflation factor and was not present.
      For LOS and hospitalization cost, we used multivariable generalized linear regression models with gamma (for cost) and Poisson (for LOS) variances and log-link functions using the same final covariates described above. Mean values for both variables were estimated using recycled prediction methods and bootstrapping for 95% confidence interval (95% CI) estimations.
      All analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, North Carolina), and the figure was generated using R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) and forestplot package.

      Results

      Prevalence of hyperkalemia

      We identified 192,182 hospitalized COVID-19 patients with a median age of 63 years, 51.6% male, 51.9% white, 23.1% black, and 23.0% Hispanic (Table 1). Most common comorbidity was DM (37.4%), followed by CKD (19.8%), chronic pulmonary disease (19.2%), and morbid obesity (18.0%).
      TABLE 1Baseline characteristics of hospitalized COVID-19 patients with and without hyperkalemia.
      AllHyperkalemiaNo HyperkalemiaP-Value
      n = 192,182n = 22,702n = 169,480
      Patient Characteristics
      Age, median (q1, q3)63.0 (50.0, 75.0)67.0 (57.0, 76.0)63.0 (49.0, 75.0)< .001
      Age Category, years, n(%)< .001
       18-3925694 (13.4)1007 (4.4)24687 (14.6)
       40-5954833 (28.5)5710 (25.2)49123 (29.0)
       60-7460288 (31.4)9256 (40.8)51032 (30.1)
       75 +51367 (26.7)6729 (29.6)44638 (26.3)
      Sex, n(%)< .001
       Female92846 (48.3)8428 (37.1)84418 (49.8)
       Male99073 (51.6)14258 (62.8)84815 (50.0)
       Unknown263 (0.1)16 (0.1)247 (0.1)
      Race, n(%)< .001
       White99719 (51.9)9533 (42.0)90186 (53.2)
       Black44354 (23.1)6801 (30.0)37553 (22.2)
       Other48109 (25.0)6368 (28.1)41741 (24.6)
      Ethnicity, n(%)< .001
       Hispanic or Latino44276 (23.0)4879 (21.5)39397 (23.2)
       Not Hispanic or Latino111610 (58.1)12938 (57.0)98672 (58.2)
       Other36296 (18.9)4885 (21.5)31411 (18.5)
      Health Insurance Status, n(%)< .001
       Medicaid33345 (17.4)3517 (15.5)29828 (17.6)
       Medicare93409 (48.6)13687 (60.3)79722 (47.0)
       Private Insurance47844 (24.9)4176 (18.4)43668 (25.8)
       Uninsured/Other/Unknown17584 (9.1)1322 (5.8)16262 (9.6)
      Charlson-Deyo Comorbidities, n(%)
       Myocardial infarction15112 (7.9)3146 (13.9)11966 (7.1)< .001
       Congestive heart failure27449 (14.3)5498 (24.2)21951 (13.0)< .001
       Peripheral vascular disease6938 (3.6)1155 (5.1)5783 (3.4)< .001
       Cerebrovascular disease6769 (3.5)1285 (5.7)5484 (3.2)< .001
       Dementia24277 (12.6)2984 (13.1)21293 (12.6).013
       Chronic pulmonary disease36822 (19.2)5043 (22.2)31779 (18.8)< .001
       Rheumatic disease3568 (1.9)407 (1.8)3161 (1.9).448
       Peptic ulcer disease1773 (0.9)389 (1.7)1384 (0.8)< .001
       Mild liver disease1729 (0.9)327 (1.4)1402 (0.8)< .001
       Diabetes mellitus71797 (37.4)12362 (54.5)59435 (35.1)< .001
       Hemiplegia or paraplegia2313 (1.2)367 (1.6)1946 (1.1)< .001
       Chronic kidney disease37965 (19.8)10193 (44.9)27772 (16.4)< .001
       Moderate or severe liver disease1811 (0.9)489 (2.2)1322 (0.8)< .001
       Any malignancy, including leukemia and lymphoma6672 (3.5)1004 (4.4)5668 (3.3)< .001
       Metastatic solid tumor2019 (1.1)251 (1.1)1768 (1.0).386
       HIV disease669 (0.3)152 (0.7)517 (0.3)< .001
      Charlson Comorbidity Index (CCI) Score Category, n(%)< .001
       071920 (37.4)4575 (20.2)67345 (39.7)
       1-495882 (49.9)11909 (52.5)83973 (49.5)
       5+24380 (12.7)6218 (27.4)18162 (10.7)
      Morbid Obesity34577 (18.0)4898 (21.6)29679 (17.5)< .001
      Hospital Characteristics
      Hospital Size, n(%)< .001
       1-29968438 (35.6)7015 (30.9)61423 (36.2)
       300-49957373 (29.9)7082 (31.2)50291 (29.7)
       500+66224 (34.5)8593 (37.9)57631 (34.0)
       Unknown147 (0.1)12 (0.1)135 (0.1)
      Teaching Status, n(%)< .001
       Non-Teaching96910 (50.4)9719 (42.8)87191 (51.4)
       Teaching95272 (49.6)12983 (57.2)82289 (48.6)
      Population Served, n(%)< .001
       Rural17966 (9.3)1822 (8.0)16144 (9.5)
       Urban174216 (90.7)20880 (92.0)153336 (90.5)
      Geographic Location, n(%)< .001
       Midwest33511 (17.4)3545 (15.6)29966 (17.7)
       Northeast47368 (24.6)7450 (32.8)39918 (23.6)
       South81982 (42.7)8756 (38.6)73226 (43.2)
       West29321 (15.3)2951 (13.0)26370 (15.6)
      HIV: human immunodeficiency virus.
      Of these patients, 11.8% (n = 22,702) patients experienced hyperkalemia. Hyperkalemia patients were more likely to be older (median age 67 vs. 63 years old), black (30.0% vs. 22.2%), and have Medicare coverage (60.3% vs. 47.0%) than patients without hyperkalemia (all p < .001). Baseline comorbidities differed as well, and hyperkalemia patients were significantly more likely to have a history of DM (54.5% vs. 35.1%), CKD (44.9% vs. 16.4%), CHF (24.2% vs. 13.0%), myocardial infarction (13.9% vs. 7.1%), chronic pulmonary disease (22.2% vs. 18.8%), and morbid obesity (21.6% vs. 17.5%) than non-hyperkalemia patients (all p < .001). Relatively lower proportion of patients in the hyperkalemia group were in smaller (1−299 beds: 30.9% vs. 36.2%), non-teaching (42.8% and 51.4%), and rural hospitals (8.0% to 9.5%), and hospitals in the South (38.6% to 43.2%) (all p < .001).

      Acute complications and medication use

      A significantly higher proportion of patients in the hyperkalemia group (70.9%) had extreme severity of illness compared to patients in the non-hyperkalemia group (34.7%, p < .001) (Table 2). More patients in the hyperkalemia group experienced acute complications including AKI (70.1% vs. 25.9%), ARDS (22.2% vs. 5.9%), hyponatremia (32.2% vs. 17.3%), metabolic or respiratory acidosis (37.4% vs. 11.2%), sepsis (57.0% vs. 27.5), and shock (38.4% vs. 7.8%) than patients in the non-hyperkalemia group (all p < .001). Hyperkalemia patients were more likely to undergo dialysis during hospitalization (31.4% vs. 4.0%) than patients without hyperkalemia (p < .001).
      TABLE 2Acute complications and treatments of hospitalized COVID-19 patients with and without hyperkalemia.
      TotalHyperkalemiaNo HyperkalemiaP-Value
      n = 192182n = 22702n = 169480
      Discharge Status, n(%)< .001
       Expired28369 (14.8)9592 (42.3)18777 (11.1)
       Home94233 (49.0)4459 (19.6)89774 (53.0)
       Home health22134 (11.5)2203 (9.7)19931 (11.8)
       Hospice5940 (3.1)744 (3.3)5196 (3.1)
       Nursing or rehabilitation facility32388 (16.9)4838 (21.3)27550 (16.3)
       Transferred793 (0.4)56 (0.3)737 (0.4)
       Other/unknown8324 (4.3)809 (3.6)7515 (4.4)
      APR-DRG Severity of Illness, n(%)< .001
       Minor or Moderate9662 (5.0)141 (0.6)9521 (5.6)
       Major107648 (56.0)6465 (28.5)101183 (59.7)
       Extreme74872 (39.0)16096 (70.9)58776 (34.7)
      Acute Complications, n(%)
       Acute ischemic heart disease8175 (4.3)2049 (9.0)6126 (3.6)< .001
       Acute kidney injury59895 (31.2)15921 (70.1)43974 (25.9)< .001
       Acute liver injury4428 (2.3)1683 (7.4)2745 (1.6)< .001
       Acute respiratory failure101602 (52.9)13593 (59.9)88009 (51.9)< .001
       Acute respiratory distress syndrome14981 (7.8)5040 (22.2)9941 (5.9)< .001
       Cerebrovascular disease4899 (2.5)1036 (4.6)3863 (2.3)< .001
       Hypokalemia37828 (19.7)3650 (16.1)34178 (20.2)< .001
       Hyponatremia36617 (19.1)7310 (32.2)29307 (17.3)< .001
       Metabolic or respiratory acidosis27460 (14.3)8490 (37.4)18970 (11.2)< .001
       Epileptic seizures9735 (5.1)1464 (6.4)8271 (4.9)< .001
       Rhabdomyolysis3496 (1.8)1031 (4.5)2465 (1.5)< .001
       Sepsis59842 (31.1)12942 (57.0)46900 (27.7)< .001
       Shock21987 (11.4)8724 (38.4)13263 (7.8)< .001
       Venous thromboembolism9676 (5.0)2232 (9.8)7444 (4.4)< .001
      Dialysis during Hospitalization, n(%)13924 (7.2)7137 (31.4)6787 (4.0)< .001
      Medication and Supplement Use, n(%)
       Albumin15134 (7.9)6051 (26.7)9083 (5.4)< .001
       Antiarrhythmic11006 (5.7)3609 (15.9)7397 (4.4)< .001
       Antibiotics other than azithromycin135641 (70.6)18846 (83.0)116795 (68.9)< .001
       Anticoagulant136276 (70.9)15590 (68.7)120686 (71.2)< .001
       Antiemetic55504 (28.9)6565 (28.9)48939 (28.9).895
       ß-blocker62957 (32.8)11613 (51.2)51344 (30.3)< .001
       Blood growth factor16984 (8.8)3948 (17.4)13036 (7.7)< .001
       Bronchodilator70734 (36.8)12010 (52.9)58724 (34.6)< .001
       Calcium channel blocker47543 (24.7)8415 (37.1)39128 (23.1)< .001
       Convalescent plasma4051 (2.1)843 (3.7)3208 (1.9)< .001
       Corticosteroid (any)104468 (54.4)15633 (68.9)88835 (52.4)< .001
       Dexamethasone63070 (32.8)7905 (34.8)55165 (32.5)< .001
       HIV medication2127 (1.1)461 (2.0)1666 (1.0)< .001
       Hydroxychloroquine and azithromycin
        Both24802 (12.9)4531 (20.0)20271 (12.0)< .001
        Hydroxychloroquine only14106 (7.3)2506 (11.0)11600 (6.8)< .001
        Azithromycin only61773 (32.1)6601 (29.1)55172 (32.6)< .001
        Neither91501 (47.6)9064 (39.9)82437 (48.6)< .001
       Immunoglobulin668 (0.3)177 (0.8)491 (0.3)< .001
       Immunomodulator12136 (6.3)3039 (13.4)9097 (5.4)< .001
       Narcotic analgesic149427 (77.8)19296 (85.0)130131 (76.8)< .001
       Smoking deterrent2518 (1.3)255 (1.1)2263 (1.3).008
       Statin66120 (34.4)9946 (43.8)56174 (33.1)< .001
       Vitamin C or D57470 (29.9)7843 (34.5)49627 (29.3)< .001
       Zinc46345 (24.1)6154 (27.1)40191 (23.7)< .001
       Remdesivir20237 (10.5)2581 (11.4)17656 (10.4)< .001
      In-Hospital RAAS Inhibitor Use, n(%)
       ACE inhibitors21301 (11.1)2184 (9.6)19117 (11.3)< .001
       ARBs17211 (9.0)1914 (8.4)15297 (9.0).003
       ARAs3776 (2.0)565 (2.5)3211 (1.9)< .001
       Any RAAS inhibitor use40262 (21.0)4379 (19.3)35883 (21.2)< .001
      Intravenous (IV) Administration, n(%)
       IV formulation of insulin73083 (38.0%)15791 (69.6%)57292 (33.8%)< .001
       IV formulation of diuretics63460 (33.0%)12625 (55.6%)50835 (30.0%)< .001
       IV formulation of bicarbonates20627 (10.7%)10227 (45.0%)10400 (6.1%)< .001
       IV formulation of calcium gluconates15305 (8.0%)8657 (38.1%)6648 (3.9%)< .001
       Any IV administration of the above104464 (54.4%)19311 (85.1%)85153 (50.2%)< .001
      APR-DRG: All Patient Refined Diagnosis Related Groups.
      HIV: human immunodeficiency virus.
      RAAS: renin-angiotensin-aldosterone system.
      ACE: angiotensin-converting-enzyme.
      ARB: angiotensin receptor blocker.
      ARA: aldosterone receptor antagonist.
      Patients experiencing hyperkalemia were more likely to receive albumin (26.7% vs. 5.4%), antiarrhythmics (15.9% vs. 4.4%), beta blockers (51.2% vs. 30.3%), blood growth factors (17.4% vs. 7.7%), bronchodilators (52.9% vs. 34.6%), corticosteroids (68.9% vs. 52.4%), immunomodulators (13.4% vs. 5.4%), and statins (43.8% vs. 33.1%) than patients without hyperkalemia (all p < .001). ACE inhibitors use (9.6% vs. 11.3%) and ARBs use (8.4% vs. 9.0%) were lower in the hyperkalemia group compared to non-hyperkalemia group (all p < .01), but the difference was small. Intravenous administration of insulin, diuretics, bicarbonates, and calcium gluconates were significantly higher among hyperkalemia COVID-19 patients compared to patients without hyperkalemia (85.1% vs. 50.2%, p < .001).

      In-hospital mortality

      In-hospital mortality was significantly higher among COVID-19 patients experiencing hyperkalemia (42.3%) compared to patients without hyperkalemia (11.1%, p < .001) (Table 3). The association between hyperkalemia and in-hospital mortality attenuated after adjusting for significant predictors of mortality including age, sex, race, ethnicity, CCI score, APR-DRG severity of illness, treatment medications and complications. However, hyperkalemia was still associated with significantly increased odds of in-hospital mortality by 69% among COVID-19 patients (aOR 1.69, 95% CI 1.62−1.77) (Table 3, Fig 1).
      TABLE 3In-Hospital mortality, healthcare resource utilization and cost of hospitalized COVID-19 patients with and without hyperkalemia.
      HyperkalemiaNo Hyperkalemia
      n = 22702n = 169480
      Unadjusted Resultsp-value
      In-Hospital Mortality, n(%)9592 (42.3)18777 (11.1)< .001
      In-Hospital Mortality + Discharged to Hospice, n(%)10336 (45.5)23973 (14.2)< .001
      Intensive Care Unit Admission, n(%)11381 (50.1)33088 (19.5)< .001
      Total Hospitalization Length of Stay, in days
       Mean (std)12.9 (11.9)8.0 (8.9)< .001
       Median (q1, q3)10.0 (4.0, 18.0)5.0 (2.0, 11.0)< .001
      Total Hospitalization Cost, in 2020 US dollars
       Mean (std)$60,193 ($80,493)$21,628 ($36,098)< .001
       Median (q1, q3)$34,233 ($15,386, $71,888)$11,168 ($5,944, $22,530)< .001
      Adjusted ResultsDifference
      In-Hospital Mortality
       Adjusted Odds Ratio1.691.00-
       95% Confidence Interval1.62-1.77[Ref]-
      In-Hospital Mortality + Discharged to Hospice
       Adjusted Odds Ratio1.611.00-
       95% Confidence Interval1.54-1.68[Ref]-
      Intensive Care Unit Admission
       Adjusted Odds Ratio1.051.00-
       95% Confidence Interval1.01-1.09[Ref]-
      Total Hospitalization Length of Stay, in days
       Mean10.008.741.26
       95% Confidence Interval9.98-10.028.72-8.761.26-1.26
      Total Hospitalization Cost, in 2020 US dollars
       Mean$29,861$24,472$5,389
       95% Confidence Interval$29,738-$29,977$24,371-$24,567$5,367-$5,410
      *All adjusted models were adjusted for sex, age category, race, Charlson Comorbidity Index score category, All Patient Refined Diagnosis Related Groups category, dialysis, acute kidney injury, acute respiratory distress syndrome, hyponatremia, acidosis, shock, and medication use (albumin, antiarrhythmics, beta blocker, blood growth factor, bronchodilator, calcium channel blocker, antibiotics other than azithromycin, statin, and intravenous non-binder treatment for hyperkalemia).
      *Cost model was adjusted using generalized linear model regression with gamma variance and log-link function.
      *Length of stay model was adjusted using generalized linear model regression with Poisson variance and log-link function.
      *Both cost and length of stay models were estimated using recycled prediction method and bootstrapping (n=1,000 simulation) for the 95% confidence interval.
      Fig 1
      Fig 1Association between in-hospital mortality and hyperkalemia (and other factors) among hospitalized COVID-19 patients.
      Other factors associated with increased in-hospital mortality among COVID-19 patients were male sex, older age, 1 or greater CCI score, extreme APR-DRG severity of illness, intravenous administration of insulin, diuretics, bicarbonates, or calcium gluconates, dialysis, AKI, ARDS, hyponatremia, metabolic or respiratory acidosis, shock, albumin use, antiarrhythmic use, bronchodilator use, and antibiotics other than azithromycin use (eTable 3 in Supplement).
      Using the composite measure of ‘in-hospital mortality + discharged to hospice’ as the outcome variable did not change the association between hyperkalemia and outcome. Hyperkalemia was still associated with significantly increased odds of in-hospital mortality + discharged to hospice by 61% among COVID-19 patients (aOR 1.61, 95% CI 1.54-1.68) (Table 3).
      In a subgroup of COVID-19 patients with AKI, those who developed hyperkalemia were 84% more likely to die during hospitalization (aOR 1.84, 95% CI 1.75-1.93) (eTable 4 in Supplement).

      Intensive care unit admission, LOS, and cost

      Significantly higher proportion of patients in the hyperkalemia group were admitted to the ICU (50.1% vs. 19.5%) than patients without hyperkalemia (Table 3). Median hospital LOS was significantly longer among patients who developed hyperkalemia compared to those who didn't (10 days vs. 5 days). Total median cost of hospitalization was also significantly higher for hyperkalemic patients ($34,233 vs. $11,168) than non-hyperkalemia patients. The differences attenuated after adjusting for age, sex, race, CCI score, APR-DRG severity of illness, and treatment medications and acute complications, but patients with hyperkalemia were still more likely to be admitted to the ICU (aOR 1.05, 95% CI 1.01-1.07), incur higher hospitalization cost (adjusted mean difference $5,389, 95% CI $5,367-$5,410), and have longer LOS (adjusted mean difference 1.26 days, 95% CI 1.26-1.26).

      Discussions

      This study shows that hyperkalemia was relatively common among hospitalized COVID-19 patients (∼12%). More importantly, hyperkalemia was associated with significantly increased likelihood of death as well as increased cost and LOS during hospitalization. While hyperkalemia was more common among patients experiencing acute complications of COVID-19 such as AKI, ARDS, and shock, this study showed that increased odds of in-hospital mortality was independent of these complications.
      The high prevalence of hyperkalemia among COVID-19 inpatients may be explained by two main reasons. First, patient's pre-existing conditions that were risk factors for developing severe illness of COVID-19 were also closely related to risk factors for experiencing hyperkalemia. Using the same database (but a different cohort), Rosenthal et al
      • Rosenthal N.
      • Cao Z.
      • Gundrum J.
      • et al.
      Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19.
      . reported that among COVID-19 inpatients, 15.0% had CHF, 40.5% had DM, and 22.9% had CKD while only 2.5% had CHF, 12.9% had DM, and 3.3% had CKD among COVID-19 outpatients during early months of the pandemic. We observed a similar distribution of comorbidities among COVID-19 inpatients. Patients with CHF and CKD were already at a higher risk of impaired urinary potassium excretion and were more likely to develop hyperkalemia,
      • Long B.
      • Warix J.R.
      • Koyfman A.
      Controversies in management of hyperkalemia.
      ,
      • Gorriz J.L.
      • D'Marco L.
      • Pastor-Gonzalez A.
      • et al.
      Long-term mortality and trajectory of potassium measurements following an episode of acute severe hyperkalemia.
      and patients with DM were at risk of redistributive hyperkalemia due to uncontrolled hyperglycemia.
      • Gorriz J.L.
      • D'Marco L.
      • Pastor-Gonzalez A.
      • et al.
      Long-term mortality and trajectory of potassium measurements following an episode of acute severe hyperkalemia.
      Second, hyperkalemia was closely associated with AKI, one of the most prevalent and serious renal manifestations of COVID-19. Fisher et al.
      • Fisher M.
      • Neugarten J.
      • Bellin E.
      • et al.
      AKI in Hospitalized Patients with and without COVID-19: a comparison study.
      reported that AKI incidence was higher among COVID-19 inpatients (56.9%) compared to non-COVID-19 inpatients (25.1%). Furthermore, compared with non-COVID-19 ICU patients, critically ill COVID-19 patients had a higher incidence of AKI.
      • Jiang L.
      • Zhu Y.
      • Luo X.
      • et al.
      Epidemiology of acute kidney injury in intensive care units in Beijing: the multi-center BAKIT study.
      ,
      • Chaibi K.
      • Dao M.
      • Pham T.
      • et al.
      Severe acute kidney injury in patients with COVID-19 and acute respiratory distress syndrome.
      Chan et al.
      • Chan L.
      • Chaudhary K.
      • Saha A.
      • et al.
      AKI in Hospitalized patients with COVID-19.
      reported that AKI occurred in 46% of 3,993 COVID-19 inpatients and in 75% of those admitted to ICU. In our study cohort, 31.2% of COVID-19 inpatients developed AKI and the proportion was much higher (70.1%) among those with hyperkalemia. In addition, hyperkalemia was also associated with higher likelihoods of other acute complications of COVID-19 (i.e., sepsis, shock, and ARDS).
      After accounting for the severity of COVID-19 illness, hyperkalemia-related pre-existing conditions and acute complications, hyperkalemia was still associated with 69% increased odds of in-hospital mortality (aOR 1.69). Liu et al.
      • Liu S.
      • Zhang L.
      • Weng H.
      • et al.
      Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan, China.
      also showed that increased serum potassium level was a predictor of mortality among COVID-19 patients independent of other risk factors. Furthermore, we showed that among hospitalized patients with COVID-19 and AKI, patients with hyperkalemia were 71% more likely to die than those without hyperkalemia. Our findings highlight the importance of monitoring potassium level among COVID-19 inpatients with or without the presence of previously reported conditions and acute complications.
      We also presented the negative impact of hyperkalemia on HRU and cost. Betts et al.
      • Betts K.A.
      • Woolley J.M.
      • Mu F.
      • et al.
      The cost of Hyperkalemia in the United States.
      reported that hyperkalemia inpatients had 1.51 days longer hospital stay than patients without hyperkalemia in the pre-COVID-19 era. Our results showed a similar difference among COVID-19 inpatients, as hyperkalemia patients had an adjusted mean of 1.26 days longer LOS than those without. Betts et al.
      • Betts K.A.
      • Woolley J.M.
      • Mu F.
      • et al.
      The cost of Hyperkalemia in the United States.
      also showed that hyperkalemia patients incurred $4,128 higher 30-day total healthcare costs than non-hyperkalemia patients. In this study, we showed that a single hospitalization for COVID-19 patients with hyperkalemia can incur $5,389 additional hospitalization cost compared to those without hyperkalemia.

      Limitations

      This study has several limitations. First, this was a secondary data analysis using hospital administrative database. Hyperkalemia status was captured by ICD-10-CM diagnosis code and potassium binder use instead of by laboratory values, and were more likely to capture more prominent hyperkalemia cases. Mild hyperkalemia patients might have been misclassified as non-hyperkalemia patients and bias the results towards the null. We did not differentiate CKD and AKI stages nor specify the dosages for RAAS inhibitors. In addition, other clinical conditions and medications were also identified using hospital-reported diagnosis and procedure codes and chargemaster descriptions; misclassification bias is possible. However, the potential misclassification is expected to be non-differential between hyperkalemia and non-hyperkalemia patients and is likely to bias the association towards the null. Second, due to the nature of observational studies, we were not able to draw any causal association between hyperkalemia and in-hospital mortality due to unmeasured confounding variables. Although we know that all other conditions including acute complications preceded death, we were not able to identify the temporal association between hyperkalemia, ICU admission, and acute complications. Third, the race and ethnicity variables were self-reported by patients at the time of hospitalization and 19% of patients had unknown ethnicity and 25% of patients had other or unknown race. This could have resulted in underestimating the actual percentage of Hispanic or black patients with COVID-19.

      Conclusions

      Despite these limitations, this study described the association between hyperkalemia and in-hospital mortality, ICU admission, LOS, and hospitalization cost using a large COVID-19 cohort in the US. Hyperkalemia was a relatively common electrolyte imbalance among hospitalized COVID-19 patients; patients were more likely to die and get admitted to the ICU during hospitalization, be hospitalized longer, and incur higher hospitalization cost when they experienced hyperkalemia. The associations were significant after accounting for the severity of illness and hyperkalemia-related conditions and acute complications such as AKI. Our findings warrant a close monitoring of potassium levels among hospitalized COVID-19 patients. Future randomized trials are needed to confirm and better understand the impact of hyperkalemia on mortality and HRU among COVID-19 patients and to identify effective methods to predict and control hyperkalemia.

      Authors Contributions

      Conceptualization - R.M., N.R., A. Agiro, R.L., W.P., and A. Amin; Data curation - H.B.; Formal analysis - H.B., and R.M.; Funding acquisition - A. Agiro, N.R., R.L., and W.P.; Investigation - R.M., A. Agiro, N.R., and A. Amin; Methodology - R.M., A. Agiro, and N.R.; Project administration - A. Agiro, R.L., W.P., and N.R.; Resources - A. Agiro, R.L., W.P., and N.R.; Software - R.M., H.B., and N.R.; Supervision - A. Agiro, N.R., and A. Amin; Validation - R.M., and N.R.; Visualization - R.M.; Writing - Original draft - R.M., N.R., and A. Agiro; Writing - Review and editing - R.M., N.R., A. Agiro, A. Amin, R.L., and W.P.

      Declaration of Competing Interest

      A. Amin served as a principal investigator or co-investigator of clinical trials sponsored by NIH/NIAID, NeuroRx Pharma, Pulmotect, Blade Therpeutics, Novartis, Takeda, Humanigen, Eli Lilly, PTC Therapeutics, OctaPharma, Fulcrum Therapeutics, Alexion. He served as a speaker and/or consultant for BMS, Pfizer, BI, Portola, Sunovion, Mylan, Salix, Alexion, AstraZeneca, Novartis, Nabriva, Paratek, Bayer, Tetraphase, Achogen LaJolla, Millenium, PeraHealth, HeartRite, Aseptiscope, Sprightly.
      R.M. worked on the study as a full-time employee of Premier, Inc. N.R. and H.B. worked on the study as full-time employees and stockholders of Premier, Inc.
      A. Agiro, R.L., and W.P. worked on the study as full-time employees and stockholders of AstraZeneca.

      Acknowledgement

      Funding/Support
      This study was funded by AstraZeneca.

      Role of Funder/Sponsor

      The funder had a role in the design and conduct of the study; management, analysis, and interpretation of the data; preparation, review, and approval of the manuscript as well as decision to submit the manuscript for publication; however, the funder had no role in collection of the data.

      Appendix. SUPPLEMENTARY MATERIALS

      References

        • JohnsHopkinsUniversity
        COVID-19 Dashboard by the Center for Systems Science and Engineering at Johns Hopkins University.
        2022 (https://coronavirus.jhu.edu/map.html. Accessed February 24)
        • Williamson E.J.
        • Walker A.J.
        • Bhaskaran K.
        • et al.
        Factors associated with COVID-19-related death using OpenSAFELY.
        Nature. 2020; 584: 430-436
        • Wu Z.
        • McGoogan J.M.
        Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention.
        JAMA. 2020;
        • Petrilli C.M.
        • Jones S.A.
        • Yang J.
        • et al.
        Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study.
        BMJ. 2020; 369: m1966
        • Team C.C.-R.
        Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 - United States, February 12-March 28, 2020.
        MMWR Morb Mortal Wkly Rep. 2020; 69: 382-386
        • Bowe B.
        • Cai M.
        • Xie Y.
        • et al.
        Acute kidney injury in a national cohort of hospitalized US veterans with COVID-19.
        Clin J Am Soc Nephrol. 2020; 16: 14-25
        • Cheng Y.
        • Luo R.
        • Wang K.
        • et al.
        Kidney disease is associated with in-hospital death of patients with COVID-19.
        Kidney Int. 2020; 97: 829-838
        • Cheng Y.
        • Luo R.
        • Wang X.
        • et al.
        The incidence, risk factors, and prognosis of acute kidney injury in adult patients with coronavirus disease 2019.
        Clin J Am Soc Nephrol. 2020; 15: 1394-1402
        • Robbins-Juarez S.Y.
        • Qian L.
        • King K.L.
        • et al.
        Outcomes for patients With COVID-19 and acute kidney injury: a systematic review and meta-analysis.
        Kidney Int Rep. 2020; 5: 1149-1160
        • Kraft M.D.
        • Btaiche I.F.
        • Sacks G.S.
        • et al.
        Treatment of electrolyte disorders in adult patients in the intensive care unit.
        Am J Health Syst Pharm. 2005; 62: 1663-1682
        • Hollander-Rodriguez J.C.
        • Calvert Jr., J.F.
        Hyperkalemia.
        Am Fam Physician. 2006; 73: 283-290
        • Crawford A.H.
        Hyperkalemia: recognition and management of a critical electrolyte disturbance.
        J Infus Nurs. 2014; 37: 167-175
        • Luo J.
        • Brunelli S.M.
        • Jensen D.E.
        • et al.
        Association between serum potassium and outcomes in patients with reduced kidney function.
        Clin J Am Soc Nephrol. 2016; 11: 90-100
        • Dattani R.
        • Hill P.
        • Medjeral-Thomas N.
        • et al.
        Oral potassium binders: increasing flexibility in times of crisis.
        Nephrol Dial Transplant. 2020; 35: 1446-1448
        • Kunutsor S.K.
        • Laukkanen J.A.
        Renal complications in COVID-19: a systematic review and meta-analysis.
        Ann Med. 2020; 52: 345-353
        • Chen T.
        • Wu D.
        • Chen H.
        • et al.
        Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.
        BMJ. 2020; 368: m1091
        • Rosenthal N.
        • Cao Z.
        • Gundrum J.
        • et al.
        Risk factors associated with in-hospital mortality in a US national sample of patients with COVID-19.
        JAMA Netw Open. 2020; 3e2029058
        • Liu S.
        • Zhang L.
        • Weng H.
        • et al.
        Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan, China.
        Int J Med Sci. 2021; 18: 736-743
        • Weir M.R.
        • Rolfe M.
        Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors.
        Clinic J Amer Soc Nephrol. 2010; 5: 531-548
        • Premier
        Premier Healthcare Database (COVID-19): Data that Informs and Performs.
        2021 (https://offers.premierinc.com/WCFY20PASCOVIDWhitepaper_LandingPage.html. Published 2020. Accessed Aug 20)
        • Lavery A.M.
        • Preston L.E.
        • Ko J.Y.
        • et al.
        Characteristics of Hospitalized COVID-19 Patients Discharged and Experiencing Same-Hospital Readmission - United States, March-August 2020.
        MMWR Morb Mortal Wkly Rep. 2020; 69: 1695-1699
        • Premier
        Premier Healthcare Database Being Used by National Institutes of Health to Evaluate Impact of COVID-19 on Patients Across the U.S.
        2021 (https://www.premierinc.com/newsroom/press-releases/premier-healthcare-database-being-used-by-national-institutes-of-health-to-evaluate-impact-of-covid-19-on-patients-across-the-u-s. Published 2020. Accessed Mar 26)
        • von Elm E.
        • Altman D.G.
        • Egger M.
        • et al.
        The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies.
        Lancet. 2007; 370: 1453-1457
        • CDC
        ICD-10-CM official coding and reporting guidelines April 1, 2020 through September 30, 2020.
        2021 (https://www.cdc.gov/nchs/data/icd/COVID-19-guidelines-final.pdf. Published 2020. Accessed Mar 26)
        • Deyo R.A.
        • Cherkin D.C.
        • Ciol M.A.
        Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases.
        J Clin Epidemiol. 1992; 45: 613-619
        • Rosenthal N.
        • Cao Z.
        • Chung J.
        • et al.
        Updated coding algorithm for assessing Charlson comorbidity index using large hospital administrative data.
        in: ISPOR 22nd Annual International Meeting; May 21, 2017; Boston, MA. 2017
        • Averill R.F.
        • Goldfield N.I.
        • Muldoon J.
        • et al.
        A closer look at all-patient refined DRGs.
        J AHIMA. 2002; 73: 46-50
        • Romano P.S.
        • Chan B.K.
        Risk-adjusting acute myocardial infarction mortality: are APR-DRGs the right tool?.
        Health Serv Res. 2000; 34: 1469-1489
        • FDA
        FDA's Approval of Veklury (remdesivir) for the Treatment of COVID-19 - The Science of Safety and Effectiveness.
        2021 (https://www.fda.gov/drugs/drug-safety-and-availability/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-and-effectiveness. Accessed Jan 27)
        • FDA
        FDA Cautions Against Use of Hydroxychloroquine or Chloroquine for COVID-19 Outside of the Hospital Setting or a Clinical Trial Due to Risk of Heart Rhythm Problems.
        U.S. Food & Drug Administration, 2021 (https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or. Accessed Jan 27)
        • Group R.C.
        • Horby P.
        • Lim W.S.
        • et al.
        Dexamethasone in hospitalized patients with Covid-19 - preliminary report.
        N Engl J Med. 2020;
        • Thomas S.
        • Patel D.
        • Bittel B.
        • et al.
        Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 Infection: the COVID A to Z randomized clinical trial.
        JAMA Netw Open. 2021; 4e210369
        • Tworek A.
        • Jaron K.
        • Uszynska-Kaluza B.
        • et al.
        Convalescent plasma treatment is associated with lower mortality and better outcomes in high risk COVID-19 patients - propensity score matched case-control study.
        Int J Infect Dis. 2021;
        • Long B.
        • Warix J.R.
        • Koyfman A.
        Controversies in management of hyperkalemia.
        J Emerg Med. 2018; 55: 192-205
        • Gorriz J.L.
        • D'Marco L.
        • Pastor-Gonzalez A.
        • et al.
        Long-term mortality and trajectory of potassium measurements following an episode of acute severe hyperkalemia.
        Nephrol Dial Transplant. 2021;
        • Fisher M.
        • Neugarten J.
        • Bellin E.
        • et al.
        AKI in Hospitalized Patients with and without COVID-19: a comparison study.
        J Am Soc Nephrol. 2020; 31: 2145-2157
        • Jiang L.
        • Zhu Y.
        • Luo X.
        • et al.
        Epidemiology of acute kidney injury in intensive care units in Beijing: the multi-center BAKIT study.
        BMC Nephrol. 2019; 20: 468
        • Chaibi K.
        • Dao M.
        • Pham T.
        • et al.
        Severe acute kidney injury in patients with COVID-19 and acute respiratory distress syndrome.
        Am J Respir Crit Care Med. 2020; 202: 1299-1301
        • Chan L.
        • Chaudhary K.
        • Saha A.
        • et al.
        AKI in Hospitalized patients with COVID-19.
        J Am Soc Nephrol. 2021; 32: 151-160
        • Betts K.A.
        • Woolley J.M.
        • Mu F.
        • et al.
        The cost of Hyperkalemia in the United States.
        Kidney Int Rep. 2018; 3: 385-393