Advertisement
Review Article| Volume 364, ISSUE 4, P386-393, October 2022

Challenges in diuretic therapy: A case-based discussion

      Abstract

      Diuretics are amongst the most prescribed medications in both the inpatient and outpatient settings. They are used extensively in diverse disease states including heart failure, acute and chronic kidney disease, cirrhosis, and diseases of excess capillary permeability such as sepsis, malignancy, and malnutrition. All are characterized by total body sodium overabundance which commonly manifests as edema. The use of diuretics is however not bereft of complications. These complications frequently limit the correction of hypervolemia, resulting in continued patient suffering and frustration for the clinician. In this review, we employ a case-based approach to discuss three common challenges encountered during diuretic therapy: diuretic resistance that characterizes the nephrotic syndrome, diuretic-induced metabolic alkalosis, and diuretic-associated hyponatremia. We empower the clinician to effectively meet these challenges by providing a mechanistic understanding of these complications and their solutions.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of the Medical Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Farber SJ
        • Soberman RJ.
        Total body water and total exchangeable sodium in edematous states due to cardiac, renal or hepatic disease 1.
        J Clin Invest. 1956; 35: 779-791https://doi.org/10.1172/jci103330
        • Birkenfeld LW
        • Leibman J
        • O'Meara MP
        • et al.
        Total exchangeable sodium, total exchangeable potassium, and total body water in edematous patients with cirrhosis of the liver and congestive heart failure.
        J Clin Invest. 1958; 37: 687-698https://doi.org/10.1172/JCI103655
        • Kantor ED
        • Rehm CD
        • Haas JS
        • et al.
        Trends in Prescription Drug Use Among Adults in the United States From 1999-2012.
        JAMA. 2015; 314: 1818https://doi.org/10.1001/jama.2015.13766
        • Koomans HA
        • Geers AB
        • Meiracker AH v.d.
        • et al.
        Effects of plasma volume expansion on renal salt handling in patients with the nephrotic syndrome.
        Am J Nephrol. 1984; 4: 227-234https://doi.org/10.1159/000166814
        • Rane A
        • Villeneuve JP
        • Stone WJ
        • et al.
        Plasma binding and disposition of furosemide in the nephrotic syndrome and in uremia.
        Clin Pharmacol Ther. 1978; 24: 199-207https://doi.org/10.1002/cpt1978242199
        • Duffy M
        • Jain S
        • Harrell N
        • et al.
        Albumin and furosemide combination for management of edema in nephrotic syndrome: a review of clinical studies.
        Cells. 2015; 4: 622-630https://doi.org/10.3390/cells4040622
        • Metcoff J
        • Janeway CA.
        Studies on the pathogenesis of nephrotic edema.
        J Pediatr. 1961; 58: 640-685https://doi.org/10.1016/S0022-3476(61)80114-5
        • Garnett ES
        • Webber CE.
        Changes in blood-volume produced by treatment in the nephrotic syndrome.
        Lancet. 1967; 290: 798-799https://doi.org/10.1016/S0140-6736(67)92234-9
        • Yamauchi H.
        Hypovolemic shock and hypotension as a complication in the nephrotic syndrome.
        Ann Intern Med. 1964; 60: 242https://doi.org/10.7326/0003-4819-60-2-242
        • Dorhout Mees EJ
        • Roos JC
        • Boer P
        • et al.
        Observations on edema formation in the nephrotic syndrome in adults with minimal lesions.
        Am J Med. 1979; 67: 378-384https://doi.org/10.1016/0002-9343(79)90782-4
        • Geers AB
        • Koomans HA
        • Boer P
        • et al.
        Plasma and blood volumes in patients with the nephrotic syndrome.
        Nephron. 1984; 38: 170-173https://doi.org/10.1159/000183302
        • Svenningsen P
        • Bistrup C
        • Friis UG
        • et al.
        Plasmin in nephrotic urine activates the epithelial sodium channel.
        J Am Soc Nephrol. 2009; 20: 299-310https://doi.org/10.1681/ASN.2008040364
        • Eder HA
        • Lauson HD
        • Chinard FP
        • et al.
        A study of the mechanisms of edema formation in patients with the nephrotic syndrome 1.
        J Clin Invest. 1954; 33: 636-656https://doi.org/10.1172/JCI102935
        • Geers AB
        • Koomans HA
        • Roos JC
        • et al.
        Functional relationships in the nephrotic syndrome.
        Kidney Int. 1984; 26: 324-330https://doi.org/10.1038/ki.1984.176
        • Andreasen F
        • Hansen HE
        • Mikkelsen E.
        Pharmacokinetics of furosemide in anephric patients and in normal subjects.
        Eur J Clin Pharmacol. 1978; 13: 41-48https://doi.org/10.1007/BF00606681
        • Welling PG.
        Pharmacokinetics of the thiazide diuretics.
        Biopharm Drug Dispos. 1986; 7: 501-535https://doi.org/10.1002/bdd.2510070602
        • Tilstone WJ
        • Dargie H
        • Dargie EN
        • et al.
        Pharmacokinetics of metolazone in normal subjects and in patients with cardiac or renal failure.
        Clin Pharmacol Ther. 1974; 16: 322-329https://doi.org/10.1002/cpt1974162322
        • Inoue M
        • Okajima K
        • Itoh K
        • et al.
        Mechanism of furosemide resistance in analbuminemic rats and hypoalbuminemic patients.
        Kidney Int. 1987; 32: 198-203https://doi.org/10.1038/ki.1987.192
        • Cutler RE
        • Forrey AW
        • Christopher TG
        • et al.
        Pharmacokinetics of furosemide in normal subjects and functionally anephric patients.
        Clin Pharmacol Ther. 1974; 15: 588-596https://doi.org/10.1002/cpt1974156588
        • Lee Hamm L
        • Nakhoul N
        • Hering-Smith KS
        Acid-base homeostasis.
        Clin J Am Soc Nephrol. 2015; 10: 2232-2242https://doi.org/10.2215/CJN.07400715
        • Gougoux A
        • Vinay P
        • Zizian L
        • et al.
        Effect of acetazolamide on renal metabolism and ammoniagenesis in the dog.
        Kidney Int. 1987; 31: 1279-1290https://doi.org/10.1038/ki.1987.141
        • Cogan MG
        • Maddox DA
        • Warnock DG.
        Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat.
        Am J Physiol - Ren Fluid Electrolyte Physiol. 1979; 6https://doi.org/10.1152/ajprenal.1979.237.6.f447
        • de Bruijn PIA
        • Larsen CK
        • Frische S
        • et al.
        Furosemide-induced urinary acidification is caused by pronounced H+ secretion in the thick ascending limb.
        Am J Physiol - Ren Physiol. 2015; 309 (F146-F153)https://doi.org/10.1152/ajprenal.00154.2015
        • Kovacikova J
        • Winter C
        • Loffing-Cueni D
        • et al.
        The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H+-ATPase.
        Kidney Int. 2006; 70: 1706-1716https://doi.org/10.1038/sj.ki.5001851
        • Jacobson HR
        • Seldin DW.
        On the generation, maintenance, and correction of metabolic alkalosis.
        Am J Physiol - Ren Fluid Electrolyte Physiol. 1983; 14: 425-432https://doi.org/10.1152/ajprenal.1983.245.4.f425
        • Hernandez RE
        • Schambelan M
        • Cogan MG
        • et al.
        Dietary NaCl determines severity of potassium depletion-induced metabolic alkalosis.
        Kidney Int. 1987; 31: 1356-1367https://doi.org/10.1038/ki.1987.150
        • Hulter HN
        • Sebastian A
        • Sigala JF.
        Pathogenesis of renal hyperchloremic acidosis resulting from dietary potassium restriction in the dog: Role of aldosterone.
        Am J Physiol - Ren Fluid Electrolyte Physiol. 1980; 7https://doi.org/10.1152/ajprenal.1980.238.2.f79
        • Adler S
        • Zett B
        • Anderson B.
        The effect of acute potassium depletion on muscle cell pH in vitro.
        Kidney Int. 1972; 2: 159-163https://doi.org/10.1038/ki.1972.86
        • Adler S
        • Fraley DS.
        Potassium and intracellular pH.
        Kidney Int. 1977; 11: 433-442https://doi.org/10.1038/ki.1977.61
        • Gennari FJ.
        Pathophysiology of metabolic alkalosis: A new classification based on the centrality of stimulated collecting duct ion transport.
        Am J Kidney Dis. 2011; 58: 626-636https://doi.org/10.1053/j.ajkd.2011.06.004
        • Orloff J
        • Kennedy TJ
        • Berliner RW.
        The effect of potassium in nephrectomized rats with hypokalemic alkalosis.
        J Clin Invest. 1953; 32: 538-542https://doi.org/10.1172/JCI102769
        • Black D.A.K.
        • Milne MD.
        Experimental potassium depletion in man.
        Lancet. 1952; 259: 244-245https://doi.org/10.1016/S0140-6736(52)91463-3
        • Antcliff AC
        • Hamilton M
        • Beevers DG
        • et al.
        The use of amiloride hydrochloride in the correction of hypokalaemic alkalosis induced by diuretics.
        Postgrad Med J. 1971; 47: 644-647https://doi.org/10.1136/pgmj.47.552.644
        • Murdoch D
        • Forrest G
        • Davies D
        • et al.
        A comparison of the potassium and magnesium-sparing properties of amiloride and spironolactone in diuretic-treated normal subjects.
        Br J Clin Pharmacol. 1993; 35: 373-378https://doi.org/10.1111/j.1365-2125.1993.tb04153.x
        • Matthesen SK
        • Larsen T
        • Vase H
        • et al.
        Effect of amiloride and spironolactone on renal tubular function and central blood pressure in patients with arterial hypertension during baseline conditions and after furosemide: A double-blinded, randomized, placebo-controlled crossover trial.
        Clin Exp Hypertens. 2013; 35: 313-324https://doi.org/10.3109/10641963.2012.721843
        • Schrier RW
        • Gross P
        • Gheorghiade M
        • et al.
        Tolvaptan, a selective oral vasopressin V 2 -receptor antagonist, for hyponatremia.
        N Engl J Med. 2006; 355: 2099-2112https://doi.org/10.1056/nejmoa065181
      1. Tolvaptan. Accessed May 5, 2021. https://www-micromedexsolutions-com.foyer.swmed.edu/micromedex2/librarian/CS/535743/ND_PR/evidencexpert/ND_P/evidencexpert/DUPLICATIONSHIELDSYNC/37E1D4/ND_PG/ evidencexpert/ND_B/evidencexpert/ND_AppProduct/evidencexpert/ND_T/evidencexpert/PFActionId/redboo

      2. FDA Drug Safety Communication: FDA limits duration and usage of Samsca (tolvaptan) due to possible liver injury leading to organ transplant or death | FDA. Accessed February 6, 2021. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-limits-duration-and-usage-samsca-tolvaptan-due-possible-liver

      3. FDA. Sodium Thiosulfate. Highlights of Prescribing Information. Accessed May 4, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203923s000lbl.pdf

        • Cicone JS
        • Petronis JB
        • Embert CD
        • et al.
        Successful treatment of calciphylaxis with intravenous sodium thiosulfate.
        Am J Kidney Dis. 2004; 43: 1104-1108https://doi.org/10.1053/j.ajkd.2004.03.018
        • Seethapathy H
        • Nigwekar SU.
        Revisiting therapeutic options for calciphylaxis.
        Curr Opin Nephrol Hypertens. 2019; 28: 448-454https://doi.org/10.1097/MNH.0000000000000520
        • Asplin JR
        • Donahue SE
        • Lindeman C
        • et al.
        Thiosulfate reduces calcium phosphate nephrolithiasis.
        J Am Soc Nephrol. 2009; 20: 1246-1253https://doi.org/10.1681/ASN.2008070754
        • Brucculeri M
        • Cheigh J
        • Bauer G
        • et al.
        Long-term intravenous sodium thiosulfate in the treatment of a patient with calciphylaxis.
        Semin Dial. 2005; 18: 431-434https://doi.org/10.1111/j.1525-139X.2005.00082.x
        • Hundemer GL
        • Fenves AZ
        • Phillips KM
        • et al.
        Sodium Thiosulfate and the Anion Gap in Patients Treated by Hemodialysis.
        Am J Kidney Dis. 2016; 68: 499-500https://doi.org/10.1053/j.ajkd.2016.02.040
        • Mao M
        • Lee S
        • Kashani K
        • et al.
        Severe Anion Gap Acidosis Associated with Intravenous Sodium Thiosulfate Administration.
        J Med Toxicol. 2013; 9: 274-277https://doi.org/10.1007/s13181-013-0305-z
        • Okonkwo OW
        • Batwara R
        • Granja I
        • et al.
        A Pilot Study of the Effect of Sodium Thiosulfate on Urinary Lithogenicity and Associated Metabolic Acid Load in Non-Stone Formers and Stone Formers with Hypercalciuria.
        PLoS One. 2013; 8: 4-9https://doi.org/10.1371/journal.pone.0060380
        • Verbalis JG
        • Goldsmith SR
        • Greenberg A
        • et al.
        Diagnosis, evaluation, and treatment of hyponatremia: Expert panel recommendations.
        Am J Med. 2013; 126 (10 SUPPL.)https://doi.org/10.1016/j.amjmed.2013.07.006
        • Edelman IS
        • Leibman J
        • O'Meara MP
        • et al.
        Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water.
        J Clin Invest. 1958; 37: 1236-1256https://doi.org/10.1172/JCI103712
        • Laragh JH.
        The effect of potassium chloride on hyponatremia.
        J Clin Invest. 1954; 33: 807-818https://doi.org/10.1172/JCI102952
        • Schrier RW
        • Lehman D
        • Zacherle B
        • et al.
        Effect of furosemide on free water excretion in edematous patients with hyponatremia.
        Kidney Int. 1973; 3: 30-34https://doi.org/10.1038/ki.1973.5
      4. Errors in table 1. Correction. Kidney Int. 1973;3(6):417. https://doi.org/10.1038/ki.1973.69

        • Suki W
        • Rector FC
        • Seldin DW.
        The site of action of furosemide and other sulfonamide diuretics in the dog.
        J Clin Invest. 1965; 44: 1458-1469https://doi.org/10.1172/JCI105252
        • Spino M
        • Sellers EM
        • Kaplan HL
        • et al.
        Adverse biochemical and clinical consequences of furosemide administration.
        Can Med Assoc J. 1978; 118: 1513-1518
        • Abraham WT
        • Shamshirsaz AA
        • McFann K
        • et al.
        Aquaretic effect of lixivaptan, an oral, non-peptide, selective V2 receptor vasopressin antagonist, in New York Heart Association functional class II and III chronic heart failure patients.
        J Am Coll Cardiol. 2006; 47: 1615-1621https://doi.org/10.1016/j.jacc.2005.11.071