Advertisement
Review Article| Volume 364, ISSUE 2, P148-162, August 2022

Deciphering the role of aquaporins in metabolic diseases: A mini review

Published:February 19, 2022DOI:https://doi.org/10.1016/j.amjms.2021.10.029

      Abstract

      The expression of various isoforms of aquaporins (AQPs) in different tissues and organs of the body makes it a viable candidate for being responsible for maintaining cell stability and integrity as their involvement has been well documented in a number of pathophysiological conditions of the human body. Any alteration in the cellular environment brought about by these AQPs creates severe downstream effects like changes in cellular osmolality, volume, ionic composition, signaling pathways and even in the levels of intracellular second messengers and, as such, facilitates the occurrence of diseases like cancer. The altered equilibrium of water, extracellular ions and amino acid neurotransmitters caused by neuronal destruction and oxidative stress in neurodegenerative diseases proposed the role of these AQPs in these diseased conditions as well. The association of AQPs in a variety of inflammatory processes like lung injury, brain edema, neuromyelitis optica, and colitis as manifested through their dysregulation both in animal and human diseases is truly an eye opener for their role in protection and reaction to various noxious stimuli including bacterial infection. Renal diseases like nephrogenic diabetes inspidus, autosomal dominant polycystic kidney disease and acute kidney injury are some of the pathophysiological conditions related to malfunctioning of aquaporins. Besides, the malfunctioning of aquaglyceroporins like AQP7 and AQP9 makes them responsible for disorders like obesity, nonalcoholic fatty liver disease and non-alcoholic steatohepatitis. In this review article, we present our current understanding of the role of AQPs in the causation of these metabolic disorders and how targeting them holds promising therapeutic potential for most of these diseases like cancer, renal diseases and even cardiovascular disorders.

      Key Indexing Terms

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to The American Journal of the Medical Sciences
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Denker BM
        • Smith BL
        • Kuhajda FP
        • et al.
        Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules.
        J Biol Chem. 1988; 263: 15634-15642
        • Preston GM
        • Agre P.
        Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family.
        Proc Natl Acad Sci USA. 1991; 88: 11110-11114
        • Kayingo G
        • Bill RM
        • Calamita G
        • et al.
        Microbial water channels and glycerol facilitators.
        Curr Top Membr. 2001; 51: 335-370
        • Maurel C
        • Verdoucq L
        • Luu DT
        • et al.
        Plant aquaporins: membrane channels with multiple integrated functions.
        Annu Rev Plant Biol. 2008; 59: 595-624
        • Pettersson N
        • Filipsson C
        • Becit E
        • et al.
        Aquaporins in yeasts and filamentous fungi.
        Biol Cell. 2005; 97: 487-500
        • Soveral G
        • Casini A.
        Aquaporin modulators: a patent review (2010-2015).
        Expert Opin Ther Pat. 2017; 27: 49-62
        • Geng X
        • Yang B.
        Transport characteristics of aquaporins.
        Adv Exp Med Biol. 2017; 969: 51-62
        • Miller EW
        • Dickinson BC
        • Chang CJ.
        Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling.
        Proc Natl Acad Sci USA. 2010; 107: 15681-15686
        • Watanabe S
        • Moniaga CS
        • Nielsen S
        • et al.
        Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells.
        Biochem Biophys Res Commun. 2016; 471: 191-197
        • Verkman AS
        • Mitra AK.
        Structure and function of aquaporin water channels.
        Am J Physiol Renal Physiol. 2000; 278: F13-F28
        • Kreida S
        • Törnroth-Horsefield S.
        Structural insights into aquaporin selectivity and regulation.
        Curr Opin Struct Biol. 2015; 33: 126-134
        • Verkman AS.
        Aquaporins.
        Curr Biol. 2013; 23: R52-R55
        • Wang J
        • Feng L
        • Zhu Z
        • et al.
        Aquaporins as diagnostic and therapeutic targets in cancer: how far we are?.
        J Transl Med. 2015; 13: 96
        • Yin T
        • Yu S
        • Xiao L
        • et al.
        Correlation between the expression of aquaporin 1 and hypoxia-inducible factor 1 in breast cancer tissues.
        J Huazhong Univ Sci Technolog Med Sci. 2008; 28: 346-348
        • Esteva-Font C
        • Jin BJ
        • Verkman AS.
        Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice.
        FASEB J. 2014; 28: 1446-1453
        • Cao XC
        • Zhang WR.
        • Cao WF
        • et al.
        Aquaporin3 is required for FGF-2-induced migration of human breast cancers.
        PLoS One. 2013; 8: e56735
        • Satooka H
        • Hara-Chikuma M.
        Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling.
        Mol Cell Biol. 2016; 36: 1206-1218
        • Huang YT
        • Zhou J
        • Shi S
        • et al.
        Identification of Estrogen response element in aquaporin-3 gene that mediates estrogen-induced cell migration and invasion in estrogen receptor-positive breast cancer.
        Sci Rep. 2015; 5: 12484
        • Mobasheri A
        • Barrett-Jolley R.
        Aquaporin water channels in the mammary gland: from physiology to pathophysiology and neoplasia.
        J Mammary Gland Biol Neoplasia. 2014; 19: 91-102
        • Shan T
        • Cui X
        • Li W
        • et al.
        AQP5: a novel biomarker that predicts poor clinical outcome in colorectal cancer.
        Oncol Rep. 2014; 32: 1564-1570
        • Roberts PJ
        • Der CJ.
        Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.
        Oncogene. 2007; 26: 3291-3310
        • Karin M.
        NF-kappaB as a critical link between inflammation and cancer.
        Cold Spring Harb Perspect Biol. 2009; 1a000141
        • Irby RB
        • Yeatman TJ.
        Role of Src expression and activation in human cancer.
        Oncogene. 2000; 19: 5636-5642
        • Kang S
        • Chae YS
        • Lee SJ
        • et al.
        Aquaporin 3 expression predicts survival in patients with HER2-positive early breast cancer.
        Anticancer Res. 2015; 35: 2775-2782
        • Guo K
        • Jin F
        NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression.
        Biochem Biophys Res Commun. 2015; 465: 644-649
        • Dajani S
        • Saripalli A
        • Sharma-Walia N.
        Water transport proteins-aquaporins (AQPs) in cancer biology.
        Oncotarget. 2018; 9: 36392-36405
        • Xu L
        • Salloum D
        • Medlin PS
        • et al.
        Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1).
        J Biol Chem. 2011; 286: 25477-25486
        • Kusayama M
        • Wada K
        • Nagata M
        • et al.
        Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma.
        Cancer Sci. 2011; 102: 1128-1136
        • Lan YL
        • Wang X
        • Lou JC
        • et al.
        The potential roles of aquaporin 4 in malignant gliomas.
        Oncotarget. 2017; 8: 32345-32355
        • Song T
        • Yang H
        • Ho JC
        • et al.
        Expression of aquaporin 5 in primary carcinoma and lymph node metastatic carcinoma of non-small cell lung cancer.
        Oncol Lett. 2015; 9: 2799-2804
        • Chen J
        • Wang T
        • Zhou YC
        • et al.
        Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer.
        J Exp Clin Cancer Res. 2014; 33: 38
        • Zhou Y
        • Wang Y
        • Wen J
        • et al.
        Aquaporin 3 promotes the stem-like properties of gastric cancer cells via Wnt/GSK-3β/β-catenin pathway.
        Oncotarget. 2016; 7: 16529-16541
        • Thiagarajah JR
        • Chang J
        • Goettel JA
        • et al.
        Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia.
        Proc Natl Acad Sci U S A. 2017; 114: 568-573
        • Tamma G
        • Valenti G
        • Grossini E
        • et al.
        Aquaporin Membrane channels in oxidative stress, cell signaling, and aging: recent advances and research trends.
        Oxid Med Cell Longev. 2018; 20181501847
        • Wen J
        • Wang Y
        • Gao C
        • et al.
        Helicobacter pylori infection promotes Aquaporin 3 expression via the ROS-HIF-1α-AQP3-ROS loop in stomach mucosa: a potential novel mechanism for cancer pathogenesis.
        Oncogene. 2018; 37: 3549-3561
        • Morrissey JJ
        • Mellnick VM
        • Luo J
        • et al.
        Evaluation of Urine Aquaporin-1 and Perilipin-2 concentrations as biomarkers to screen for renal cell carcinoma: A prospective cohort study.
        JAMA Oncol. 2015; 1: 204-212
        • Imrédi E
        • Tóth B
        • Doma V
        • et al.
        Aquaporin 1 protein expression is associated with BRAF V600 mutation and adverse prognosis in cutaneous melanoma.
        Melanoma Res. 2016; 26: 254-260
        • Tan M
        • Shao C
        • Bishop JA
        • et al.
        Aquaporin- 1 promoter hypermethylation is associated with improved prognosis in salivary gland adenoid cystic carcinoma.
        Otolaryngol Head Neck Surg. 2014; 150: 801-807
        • Dong X
        • Wang Y
        • Zhou Y
        • et al.
        Aquaporin 3 facilitates chemoresistance in gastric cancer cells to cisplatin via autophagy.
        Cell Death Discov. 2016; 2: 16087
        • Ismail M
        • Bokaee S
        • Morgan R
        • et al.
        Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy.
        Br J Cancer. 2009; 100: 1889-1895
        • Huang X
        • Huang L
        • Shao M.
        Aquaporin 3 facilitates tumor growth in pancreatic cancer by modulating mTOR signaling.
        Biochem Biophys Res Commun. 2017; 486: 1097-1102
        • Xiong G
        • Chen X
        • Zhang Q
        • et al.
        RNA interference influenced the proliferation and invasion of XWLC-05 lung cancer cells through inhibiting aquaporin 3.
        Biochem Biophys Res Commun. 2017; 485: 627-634
        • Weir RA
        • McMurray JJ
        • Velazquez EJ.
        Epidemiology of heart failure and left ventricular systolic dysfunction after acute myocardial infarction: prevalence, clinical characteristics, and prognostic importance.
        Am J Cardiol. 2006; 97: 13F-25F
        • Parveen A
        • Babbar R
        • Agarwal S
        • et al.
        Terminalia arjuna enhances baroreflex sensitivity and myocardial function in isoproterenol-induced chronic heart failure rats.
        J Cardiovasc Pharmacol Ther. 2012; 17: 199-207
        • Jonker S
        • Davis LE
        • van der Bilt JD
        • et al.
        Anaemia stimulates aquaporin 1 expression in the fetal sheep heart.
        Exp Physiol. 2003; 88: 691-698
        • Zhang HZ
        • Kim MH
        • Lim JH
        • et al.
        Time-dependent expression patterns of cardiac aquaporins following myocardial infarction.
        J Korean Med Sci. 2013; 28: 402-408
        • Das M
        • Dutta A.
        Expression patterns of different isoforms of aquaporins in isoproterenol-induced myocardial infraction model in rat treated with Terminalia arjuna bark extract.
        Medicinal Plants. 2020; 12: 161-170
        • Mylonakis E
        • Calderwood SB.
        Infective endocarditis in adults.
        N Engl J Med. 2001; 345: 1318-1330
        • Benoit M
        • Thuny F
        • Le Priol Y
        • et al.
        The transcriptional programme of human heart valves reveals the natural history of infective endocarditis.
        PLoS One. 2010; 5: e8939
        • Thuny F
        • Textoris J
        • Amara AB
        • et al.
        The gene expression analysis of blood reveals S100A11 and AQP9 as potential biomarkers of infective endocarditis.
        PLoS One. 2012; 7: e31490
        • Vincent LL
        • Otto CM.
        Infective endocarditis: update on epidemiology, outcomes, and management.
        Curr Cardiol Rep. 2018; 20: 86
        • Zheng JS
        • Dai Y
        • Li J
        • et al.
        Expression of aquaporin-1 (AQP-1) in rat heart.
        Asia Pacific Heart J. 1999; 8: 36-43
        • Xu DL
        • Martin PY
        • Ohara M
        • et al.
        Upregulation of aquaporin-2 water channel expression in chronic heart failure rat.
        J Clin Invest. 1997; 99: 1500-1505
        • Schrier RW.
        Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy.
        N Engl J Med. 1988; 319: 1127-1134
        • Nielsen S
        • Terris J
        • Andersen D
        • et al.
        Congestive heart failure in rats is associated with increased expression and targeting of aquaporin-2 water channel in collecting duct.
        Proc Natl Acad Sci U S A. 1997; 94: 5450-5455
        • Pellicori P
        • Kaur K
        • Clark AL.
        Fluid management in patients with chronic heart failure.
        Card Fail Rev. 2015; 1: 90-95
        • Coppedè F
        • Mancuso M
        • Siciliano G
        • et al.
        Genes and the environment in neurodegeneration.
        Biosci Rep. 2006; 26: 341-367
        • Wingerchuk DM
        • Hogancamp WF
        • O'Brien PC
        • et al.
        The clinical course of neuromyelitis optica (Devic's syndrome).
        Neurology. 1999; 53: 1107-1114
        • Lucchinetti CF
        • Mandler RN
        • McGavern D
        • et al.
        A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica.
        Brain. 2002; 125: 1450-1461
        • Wingerchuk DM
        • Lennon VA
        • Pittock SJ
        • et al.
        Revised diagnostic criteria for neuromyelitis optica.
        Neurology. 2006; 66: 1485-1489
        • Misu T
        • Fujihara K
        • Nakamura M
        • et al.
        Loss of aquaporin-4 in active perivascular lesions in neuromyelitis optica: a case report.
        Tohoku J Exp Med. 2006; 209: 269-275
        • Jacob A
        • Matiello M
        • Wingerchuk DM
        • et al.
        Neuromyelitis optica: changing concepts.
        J Neuroimmunol. 2007; 187: 126-138
        • Roemer SF
        • Parisi JE
        • Lennon VA
        • et al.
        Pattern-specific loss of aquaporin-4 immunoreactivity distinguishes neuromyelitis optica from multiple sclerosis.
        Brain. 2007; 130: 1194-1205
        • Misu T
        • Fujihara K
        • Kakita A
        • et al.
        Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis.
        Brain. 2007; 130: 1224-1234
        • Lennon VA
        • Kryzer TJ
        • Pittock SJ
        • et al.
        IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel.
        J Exp Med. 2005; 202: 473-477
        • Morgan BP
        • Gasque P.
        Expression of complement in the brain: role in health and disease.
        Immunol Today. 1996; 17: 461-466
        • Correale J
        • Fiol M.
        Activation of humoral immunity and eosinophils in neuromyelitis optica.
        Neurology. 2004; 63: 2363-2370
        • Haase CG
        • Schmidt S.
        Detection of brain-specific autoantibodies to myelin oligodendrocyte glycoprotein, S100beta and myelin basic protein in patients with Devic's neuromyelitis optica.
        Neurosci Lett. 2001; 307: 131-133
        • Lalive PH
        • Menge T
        • Barman I
        • et al.
        Identification of new serum autoantibodies in neuromyelitis optica using protein microarrays.
        Neurology. 2006; 67: 176-177
        • Matiello M
        • Jacob A
        • Wingerchuk DM
        • et al.
        Neuromyelitis optica.
        Curr Opin Neurol. 2007; 20: 255-260
        • Tait MJ
        • Saadoun S
        • Bell BA
        • et al.
        Water movements in the brain: role of aquaporins.
        Trends Neurosci. 2008; 31: 37-43
        • Cummings JL
        • Vinters HV
        • Cole GM
        • et al.
        Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities.
        Neurology. 1998; 51 (Suppl 1): S2-S67
        • Duyckaerts C
        • Dickson DW.
        Neuropathology of Alzheimer's disease.
        Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. ISN Neuropath Press, Basel2003 ([chapter 10])
        • Kofuji P
        • Newman EA.
        Potassium buffering in the central nervous system.
        Neuroscience. 2004; 129: 1045-1056
        • Orkand RK
        • Nicholls JG
        • Kuffler SW.
        Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia.
        J Neurophysiol. 1966; 29: 788-806
        • Nagelhus EA
        • Horio Y
        • Inanobe A
        • et al.
        Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains.
        Glia. 1999; 26: 47-54
        • Misawa T
        • Arima K
        • Mizusawa H
        • et al.
        Close association of water channel AQP1 with amyloid-beta deposition in Alzheimer disease brains.
        Acta Neuropathol. 2008; 116: 247-260
        • Dohke Y
        • Turner RJ.
        Evidence that the transmembrane biogenesis of aquaporin 1 is cotranslational in intact mammalian cells.
        J Biol Chem. 2002; 277: 15215-15219
        • Nagele RG
        • Wegiel J
        • Venkataraman V
        • et al.
        Contribution of glial cells to the development of amyloid plaques in Alzheimer's disease.
        Neurobiol Aging. 2004; 25: 663-674
        • Wisniewski HM
        • Wegiel J.
        Spatial relationships between astrocytes and classical plaque components.
        Neurobiol Aging. 1991; 12: 593-600
        • Pérez E
        • Barrachina M
        • Rodríguez A
        • et al.
        Aquaporin expression in the cerebral cortex is increased at early stages of Alzheimer disease.
        Brain Res. 2007; 1128: 164-174
        • Ervin JF
        • Pannell C
        • Szymanski M
        • et al.
        Vascular smooth muscle actin is reduced in Alzheimer disease brain: a quantitative analysis.
        J Neuropathol Exp Neurol. 2004; 63: 735-741
        • Kalaria RN
        • Hedera P.
        Differential degeneration of the cerebral microvasculature in Alzheimer's disease.
        Neuroreport. 1995; 6: 477-480
        • Blank ME
        • Ehmke H.
        Aquaporin-1 and HCO3(-)-Cl- transporter-mediated transport of CO2 across the human erythrocyte membrane.
        J Physiol. 2003; 550: 419-429
        • Echevarría M
        • Muñoz-Cabello AM
        • Sánchez-Silva R
        • et al.
        Development of cytosolic hypoxia and hypoxia-inducible factor stabilization are facilitated by aquaporin-1 expression.
        J Biol Chem. 2007; 282: 30207-30215
        • Herrera M
        • Garvin JL.
        Novel role of AQP-1 in NO-dependent vasorelaxation.
        Am J Physiol Renal Physiol. 2007; 292: F1443-F1451
        • Aslan M
        • Ozben T.
        Reactive oxygen and nitrogen species in Alzheimer's disease.
        Curr Alzheimer Res. 2004; 1: 111-119
        • Verkman AS.
        More than just water channels: unexpected cellular roles of aquaporins.
        J Cell Sci. 2005; 118: 3225-3232
        • Takeda K
        • Kaisho T
        • Akira S.
        Toll-like receptors.
        Annu Rev Immunol. 2003; 21: 335-376
        • Medzhitov R.
        Recognition of microorganisms and activation of the immune response.
        Nature. 2007; 449: 819-826
        • De Baey A
        • Lanzavecchia A.
        The role of aquaporins in dendritic cell macropinocytosis.
        J Exp Med. 2000; 191: 743-748
        • Jablonski EM
        • Webb AN
        • McConnell NA
        • et al.
        Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease.
        Am J Physiol Cell Physiol. 2004; 286: C975-C985
        • Zhu N
        • Feng X
        • He C
        • et al.
        Defective macrophage function in aquaporin-3 deficiency.
        FASEB J. 2011; 25: 4233-4239
        • Rabolli V
        • Wallemme L
        • Lo Re S
        • et al.
        Critical role of aquaporins in interleukin 1β (IL-1β)-induced inflammation.
        J Biol Chem. 2014; 289: 13937-13947
        • Manley GT
        • Fujimura M
        • Ma T
        • et al.
        Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke.
        Nat Med. 2000; 6: 159-163
        • Papadopoulos MC
        • Manley GT
        • Krishna S
        • et al.
        Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema.
        FASEB J. 2004; 18: 1291-1293
        • Cho SJ
        • Sattar AK
        • Jeong EH
        • et al.
        Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles.
        Proc Natl Acad Sci USA. 2002; 99: 4720-4724
        • Sugiya H
        • Matsuki M.
        AQPs and control of vesicle volume in secretory cells.
        J Membr Biol. 2006; 210: 155-159
        • Li L
        • Zhang H
        • Varrin-Doyer M
        • et al.
        Proinflammatory role of aquaporin-4 in autoimmune neuroinflammation.
        FASEB J. 2011; 25: 1556-1566
        • Ikeshima-Kataoka H.
        Neuroimmunological Implications of AQP4 in Astrocytes.
        Int J Mol Sci. 2016; 17: 1306
        • Mayer L.
        Evolving paradigms in the pathogenesis of IBD.
        J Gastroenterol. 2010; 45: 9-16
        • Dunlop SP
        • Hebden J
        • Campbell E
        • et al.
        Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes.
        Am J Gastroenterol. 2006; 101: 1288-1294
        • Zhou Q
        • Zhang B
        • Verne GN.
        Intestinal membrane permeability and hypersensitivity in the irritable bowel syndrome.
        Pain. 2009; 146: 41-46
        • Martínez C
        • Vicario M
        • Ramos L
        • et al.
        The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations.
        Am J Gastroenterol. 2012; 107: 736-746
        • Guttman JA
        • Samji FN
        • Li Y
        • et al.
        Aquaporins contribute to diarrhoea caused by attaching and effacing bacterial pathogens.
        Cell Microbiol. 2007; 9: 131-141
        • Chao G
        • Zhang S.
        Aquaporins 1, 3 and 8 expression in irritable bowel syndrome rats' colon via NF-κB pathway.
        Oncotarget. 2017; 8: 47175-47183
        • Tancharoen S
        • Matsuyama T
        • Abeyama K
        • et al.
        The role of water channel aquaporin 3 in the mechanism of TNF-alpha-mediated proinflammatory events: Implication in periodontal inflammation.
        J Cell Physiol. 2008; 217: 338-349
        • Horie I
        • Maeda M
        • Yokoyama S
        • et al.
        Tumor necrosis factor-alpha decreases aquaporin-3 expression in DJM-1 keratinocytes.
        Biochem Biophys Res Commun. 2009; 387: 564-568
        • Peplowski MA
        • Vegso AJ
        • Iablokov V
        • et al.
        Tumor necrosis factor α decreases aquaporin 3 expression in intestinal epithelial cells through inhibition of constitutive transcription.
        Physiol Rep. 2017; 5: e13451
        • Dicay MS
        • Hirota CL
        • Ronaghan NJ
        • et al.
        Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation.
        PLoS One. 2015; 10e0118713
        • Thiagarajah JR
        • Zhao D
        • Verkman AS.
        Impaired enterocyte proliferation in aquaporin-3 deficiency in mouse models of colitis.
        Gut. 2007; 56: 1529-1535
        • Mobasheri A
        • Trujillo E
        • Bell S
        • et al.
        Aquaporin water channels AQP1 and AQP3, are expressed in equine articular chondrocytes.
        Vet J. 2004; 168: 143-150
        • Nagahara M
        • Waguri-Nagaya Y
        • Yamagami T
        • et al.
        TNF-alpha-induced aquaporin 9 in synoviocytes from patients with OA and RA.
        Rheumatology. 2010; 49: 898-906
        • Mobasheri A
        • Neama G
        • Bell S
        • et al.
        Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9.
        Cell Biol Int. 2002; 26: 297-300
        • Richardson S
        • Neama G
        • Phillips T
        • et al.
        Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation.
        Osteoarthr Cartil. 2003; 11: 92-101
        • Gao H
        • Ren G
        • Xu Y
        • et al.
        Correlation between expression of aquaporins 1 and chondrocyte apoptosis in articular chondrocyte of osteoarthritis.
        Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2011; 25: 279-284
        • Tang SC
        • Yiu WH
        • Lin M
        • et al.
        Diabetic nephropathy and proximal tubular damage.
        J Ren Nutr. 2015; 25: 230-233
        • Wu H
        • Chen L
        • Zhang X
        • et al.
        Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2.
        PLoS One. 2013; 8: e53342
        • Lu Y
        • Chen L
        • Zhao B
        • et al.
        Urine AQP5 is a potential novel biomarker of diabetic nephropathy.
        J Diabetes Complications. 2016; 30: 819-825
        • Raman A
        • Reif GA
        • Dai Y
        • et al.
        Integrin-linked kinase signaling promotes cyst growth and fibrosis in polycystic kidney disease.
        J Am Soc Nephrol. 2017; 28: 2708-2719
        • Ciolek J
        • Reinfrank H
        • Quinton L
        • et al.
        Green mamba peptide targets type-2 vasopressin receptor against polycystic kidney disease.
        Proc Natl Acad Sci USA. 2017; 114: 7154-7159
        • Lanktree MB
        • Chapman AB.
        New treatment paradigms for ADPKD: moving towards precision medicine.
        Nat Rev Nephrol. 2017; 13: 750-768
        • Wang W
        • Li F
        • Sun Y
        • et al.
        Aquaporin-1 retards renal cyst development in polycystic kidney disease by inhibition of Wnt signaling.
        FASEB J. 2015; 29: 1551-1563
        • He J
        • Yang B.
        Aquaporins in Renal Diseases.
        Int J Mol Sci. 2019; 20: 366
        • Aboudehen K
        • Noureddine L
        • Cobo-Stark P
        • et al.
        Hepatocyte nuclear factor-1β regulates urinary concentration and response to hypertonicity.
        J Am Soc Nephrol. 2017; 28: 2887-2900
        • Noitem R
        • Yuajit C
        • Soodvilai S
        • et al.
        Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation.
        Biomed Pharmacother. 2018; 101: 754-762
        • Saito T
        • Tanaka Y
        • Morishita Y
        • et al.
        Proteomic analysis of AQP11-null kidney: Proximal tubular type polycystic kidney disease.
        Biochem Biophys Rep. 2017; 13: 17-21
        • Inoue Y
        • Sohara E
        • Kobayashi K
        • et al.
        Aberrant glycosylation and localization of polycystin-1 cause polycystic kidney in an AQP11 knockout model.
        J Am Soc Nephrol. 2014; 25: 2789-2799
        • Song JB
        • Morrissey JJ
        • Mobley JM
        • et al.
        Urinary aquaporin 1 and perilipin 2: Can these novel markers accurately characterize small renal masses and help guide patient management?.
        Int J Urol. 2019; 26: 260-265
        • Morrissey JJ
        • Mobley J
        • Figenshau RS
        • et al.
        Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate cancer.
        Mayo Clin Proc. 2015; 90: 35-42
        • Rocchetti MT
        • Tamma G
        • Lasorsa D
        • et al.
        Altered urinary excretion of aquaporin 2 in IgA nephropathy.
        Eur J Endocrinol. 2011; 165: 657-664
        • Rodionova EA
        • Kuznetsova AA
        • Shakhmatova EI
        • et al.
        Urinary aquaporin-2 in children with acute pyelonephritis.
        Pediatr Nephrol. 2006; 21: 361-367
        • Loonen AJ
        • Knoers NV
        • van Os CH
        • et al.
        Aquaporin 2 mutations in nephrogenic diabetes insipidus.
        Semin Nephrol. 2008; 28: 252-265
        • Savelkoul PJ
        • De Mattia F
        • Li Y
        • et al.
        R254Q mutation in the aquaporin-2 water channel causing dominant nephrogenic diabetes insipidus is due to a lack of arginine vasopressin-induced phosphorylation.
        Hum Mutat. 2009; 30: E891-E903
        • De Mattia F
        • Savelkoul PJ
        • Kamsteeg EJ
        • et al.
        Lack of arginine vasopressin-induced phosphorylation of aquaporin-2 mutant AQP2-R254L explains dominant nephrogenic diabetes insipidus.
        J Am Soc Nephrol. 2005; 16: 2872-2880
        • Kamsteeg EJ
        • Savelkoul PJ
        • Hendriks G
        • et al.
        Missorting of the Aquaporin-2 mutant E258K to multivesicular bodies/lysosomes in dominant NDI is associated with its monoubiquitination and increased phosphorylation by PKC but is due to the loss of E258.
        Pflugers Arch. 2008; 455: 1041-1054
        • Kuwahara M
        • Iwai K
        • Ooeda T
        • et al.
        Three families with autosomal dominant nephrogenic diabetes insipidus caused by aquaporin-2 mutations in the C-terminus.
        Am J Hum Genet. 2001; 69: 738-748
        • Asai T
        • Kuwahara M
        • Kurihara H
        • et al.
        Pathogenesis of nephrogenic diabetes insipidus by aquaporin-2 C-terminus mutations.
        Kidney Int. 2003; 64: 2-10
        • Sohara E
        • Rai T
        • Yang SS
        • et al.
        Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation.
        Proc Natl Acad Sci U S A. 2006; 103: 14217-14222
        • Robben JH
        • Knoers NV
        • Deen PM.
        Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus.
        Am J Physiol Renal Physiol. 2006; 291: F257-F270
        • Kim GH
        • Lee JW
        • Oh YK
        • et al.
        Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel.
        J Am Soc Nephrol. 2004; 15: 2836-2843
        • Bouley R
        • Breton S
        • Sun T
        • et al.
        Nitric oxide and atrial natriuretic factor stimulate cGMP-dependent membrane insertion of aquaporin 2 in renal epithelial cells.
        J Clin Invest. 2000; 106: 1115-1126
        • Sohara E
        • Rai T
        • Yang SS
        • et al.
        Pathogenesis and treatment of autosomal-dominant nephrogenic diabetes insipidus caused by an aquaporin 2 mutation.
        Proc Natl Acad Sci U S A. 2006; 103: 14217-14222
        • Timmer RT
        • Sands JM.
        Lithium intoxication.
        J Am Soc Nephrol. 1999; 10: 666-674
        • Trepiccione F
        • Christensen BM.
        Lithium-induced nephrogenic diabetes insipidus: new clinical and experimental findings.
        J Nephrol. 2010; 23: S43-S48
        • Rej S.
        • Herrmann N.
        • Shulman K.
        The effects of lithium on renal function in older adults–a systematic review.
        J. Geriatr. Psychiatry Neurol. 2012; 25: 51-61
        • Hetmar O
        • Bolwig TG
        • Brun C
        • et al.
        Lithium: long-term effects on the kidney I. Renal function in retrospect.
        Acta Psychiatr Scand. 1986; 73: 574-581
        • Christensen BM
        • Marples D
        • Kim YH
        • et al.
        Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI.
        Am J Physiol Cell Physiol. 2004; 286: C952-C964
        • Li Y
        • Shaw S
        • Kamsteeg EJ
        • et al.
        Development of lithium-induced nephrogenic diabetes insipidus is dissociated from adenylyl cyclase activity.
        J Am Soc Nephrol. 2006; 17: 1063-1072
        • Walker RJ
        • Weggery S
        • Bedford JJ
        • et al.
        Lithium-induced reduction in urinary concentrating ability and urinary aquaporin 2 (AQP2) excretion in healthy volunteers.
        Kidney Int. 2005; 67: 291-294
        • Kortenoeven ML
        • Fenton RA.
        Renal aquaporins and water balance disorders.
        Biochim Biophys Acta. 2014; 1840: 1533-1549
        • Kortenoeven ML
        • Li Y
        • Shaw S
        • et al.
        Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus.
        Kidney Int. 2009; 76: 44-53
        • Bedford JJ
        • Weggery S
        • Ellis G
        • et al.
        Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride.
        Clin J Am Soc Nephrol. 2008; 3: 1324-1331
        • Batlle DC
        • von Riotte AB
        • Gaviria M
        • et al.
        Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy.
        N Engl J Med. 1985; 312: 408-414
        • Frøkiaer J
        • Marples D
        • Knepper MA
        • et al.
        Bilateral ureteral obstruction downregulates expression of vasopressin-sensitive AQP-2 water channel in rat kidney.
        Am J Physiol. 1996; 270 (Pt 2): F657-F668
        • Frøkiaer J
        • Christensen BM
        • Marples D
        • et al.
        Downregulation of aquaporin-2 parallels changes in renal water excretion in unilateral ureteral obstruction.
        Am J Physiol. 1997; 273 (2 Pt): F213-F223
        • Nielsen S
        • Frøkiaer J
        • Marples D
        • et al.
        Aquaporins in the kidney: from molecules to medicine.
        Physiol Rev. 2002; 82: 205-244
        • Hussein AA
        • El-Dken ZH
        • Barakat N
        • et al.
        Renal ischaemia/reperfusion injury: possible role of aquaporins.
        Acta Physiol. 2012; 204: 308-316
        • Morishita Y
        • Matsuzaki T
        • Hara-chikuma M
        • et al.
        Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule.
        Mol Cell Biol. 2005; 25: 7770-7779
        • Atochina-Vasserman EN
        • Biktasova A
        • Abramova E
        • et al.
        Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress.
        Am J Physiol Renal Physiol. 2013; 304: F1295-F1307
        • Choma DP
        • Vanacore R
        • Naylor H
        • et al.
        Aquaporin 11 variant associates with kidney disease in type 2 diabetic patients.
        Am J Physiol Renal Physiol. 2016; 310: F416-F425
        • da Silva IV
        • Soveral G.
        Aquaporins in obesity.
        Adv Exp Med Biol. 2017; 969: 227-238
        • Després JP
        • Lemieux I.
        Abdominal obesity and metabolic syndrome.
        Nature. 2006; 444: 881-887
        • Rojek A
        • Praetorius J
        • Frøkiaer J
        • et al.
        A current view of the mammalian aquaglyceroporins.
        Annu Rev Physiol. 2008; 70: 301-327
        • Kuriyama H
        • Kawamoto S
        • Ishida N
        • et al.
        Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability.
        Biochem Biophys Res Commun. 1997; 241: 53-58
        • Ishibashi K
        • Yamauchi K
        • Kageyama Y
        • et al.
        Molecular characterization of human Aquaporin-7 gene and its chromosomal mapping.
        Biochim Biophys Acta. 1998; 1399: 62-66
        • Kishida K
        • Kuriyama H
        • Funahashi T
        • et al.
        Aquaporin adipose, a putative glycerol channel in adipocytes.
        J Biol Chem. 2000; 275: 20896-20902
        • Miranda M
        • Escoté X
        • Ceperuelo-Mallafré V
        • et al.
        Paired subcutaneous and visceral adipose tissue aquaporin-7 expression in human obesity and type 2 diabetes: differences and similarities between depots.
        J Clin Endocrinol Metab. 2010; 95: 3470-3479
        • Lee DH
        • Park DB
        • Lee YK
        • et al.
        The effects of thiazolidinedione treatment on the regulations of aquaglyceroporins and glycerol kinase in OLETF rats.
        Metabolism. 2005; 54: 1282-1289
        • Shen FX
        • Gu X
        • Pan W
        • et al.
        Over-expression of AQP7 contributes to improve insulin resistance in adipocytes.
        Exp Cell Res. 2012; 318: 2377-2384
        • Hara-Chikuma M
        • Sohara E
        • Rai T
        • et al.
        Progressive adipocyte hypertrophy in aquaporin-7-deficient mice: adipocyte glycerol permeability as a novel regulator of fat accumulation.
        J Biol Chem. 2005; 280: 15493-15496
        • Hibuse T
        • Maeda N
        • Funahashi T
        • et al.
        Aquaporin 7 deficiency is associated with development of obesity through activation of adipose glycerol kinase.
        Proc Natl Acad Sci U S A. 2005; 102: 10993-10998
        • Skowronski MT
        • Lebeck J
        • Rojek A
        • et al.
        AQP7 is localized in capillaries of adipose tissue, cardiac and striated muscle: implications in glycerol metabolism.
        Am J Physiol Renal Physiol. 2007; 292: F956-F965
        • Matsumura K
        • Chang BH
        • Fujimiya M
        • et al.
        Aquaporin 7 is a beta-cell protein and regulator of intraislet glycerol content and glycerol kinase activity, beta-cell mass, and insulin production and secretion.
        Mol Cell Biol. 2007; 27: 7354
        • Lindgren CM
        • Mahtani MM
        • Widén E
        • et al.
        Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study.
        Am J Hum Genet. 2002; 70: 509-516
        • Loos RJ
        • Katzmarzyk PT
        • Rao DC
        • et al.
        Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study.
        J Clin Endocrinol Metab. 2003; 88: 5935-5943
        • Prudente S
        • Flex E
        • Morini E
        • et al.
        A functional variant of the adipocyte glycerol channel aquaporin 7 gene is associated with obesity and related metabolic abnormalities.
        Diabetes. 2007; 56: 1468-1474
        • Lebeck J
        • Østergård T
        • Rojek A
        • et al.
        Gender-specific effect of physical training on AQP7 protein expression in human adipose tissue.
        Acta Diabetol. 2012; 49: S215-S226
        • Rodríguez A
        • Marinelli RA
        • Tesse A
        • et al.
        Sexual Dimorphism of adipose and hepatic aquaglyceroporins in health and metabolic disorders.
        Front Endocrinol (Lausanne). 2015; 6: 171
        • Rodríguez A
        • Catalán V
        • Gómez-Ambrosi J
        • et al.
        Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade.
        J Clin Endocrinol Metab. 2011; 96: E586-E597
        • Kuriyama H
        • Shimomura I
        • Kishida K
        • et al.
        Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9.
        Diabetes. 2002; 51: 2915-2921
        • Jelen S
        • Wacker S
        • Aponte-Santamaría C
        • et al.
        Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice.
        J Biol Chem. 2011; 286: 44319-44325
        • Gena P
        • Mastrodonato M
        • Portincasa P
        • et al.
        Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of Non-Alcoholic Fatty Liver Disease.
        PLoS One. 2013; 8: e78139
        • Roberts EA.
        Pediatric nonalcoholic fatty liver disease (NAFLD): a “growing” problem?.
        J Hepatol. 2007; 46: 1133-1142
        • Angulo P
        • Lindor KD.
        Non-alcoholic fatty liver disease.
        J Gastroenterol Hepatol. 2002; 17 (Suppl): S186-S190
        • Vernon G
        • Baranova A
        • Younossi ZM.
        Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults.
        Aliment Pharmacol Ther. 2011; 34: 274-285
        • Day CP
        • James OF.
        Steatohepatitis: a tale of two “hits”?.
        Gastroenterology. 1998; 114: 842-845
        • Feldstein AE
        • Werneburg NW
        • Canbay A
        • et al.
        Free fatty acids promote hepatic lipotoxicity by stimulating TNF-alpha expression via a lysosomal pathway.
        Hepatology. 2004; 40: 185-194
      1. Day CP. From fat to inflammation.
        Gastroenterology. 2006; 130: 207-210
        • Mylonakou MN
        • Petersen PH
        • Rinvik E
        • et al.
        Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons.
        J Neurosci Res. 2009; 87: 1310-1322
        • Huebert RC
        • Splinter PL
        • Garcia F
        • et al.
        Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion.
        J Biol Chem. 2002; 277: 22710-22717
        • Jelen S
        • Wacker S
        • Aponte-Santamaría C
        • et al.
        Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice.
        J Biol Chem. 2011; 286: 44319-44325
        • Cai C
        • Wang C
        • Ji W
        • et al.
        Knockdown of hepatic aquaglyceroporin-9 alleviates high fat diet-induced non-alcoholic fatty liver disease in rats.
        Int Immunopharmacol. 2013; 15: 550-556
        • Saadoun S
        • Papadopoulos MC
        • Davies DC
        • et al.
        Increased aquaporin 1 water channel expression in human brain tumours.
        Br J Cancer. 2002; 87: 621-623
        • Oshio K
        • Binder DK
        • Liang Y
        • et al.
        Expression of the aquaporin-1 water channel in human glial tumors.
        Neurosurgery. 2005; 56: 375-381
        • El Hindy N
        • Bankfalvi A
        • Herring A
        • et al.
        Correlation of aquaporin-1 water channel protein expression with tumor angiogenesis in human astrocytoma.
        Anticancer Res. 2013; 33: 609-613
        • Saadoun S
        • Papadopoulos MC
        • Davies DC
        • et al.
        Aquaporin-4 expression is increased in oedematous human brain tumours.
        J Neurol Neurosurg Psychiatry. 2002; 72: 262-265
        • Warth A
        • Kröger S
        • Wolburg H.
        Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae.
        Acta Neuropathol. 2004; 107: 311-318
        • Warth A
        • Simon P
        • Capper D
        • et al.
        Expression pattern of the water channel aquaporin-4 in human gliomas is associated with blood-brain barrier disturbance but not with patient survival.
        J Neurosci Res. 2007; 85: 1336-1346
        • Dua RK
        • Devi BI
        • Yasha TC.
        Increased expression of Aquaporin-4 and its correlation with contrast enhancement and perilesional edema in brain tumors.
        Br J Neurosurg. 2010; 24: 454-459
        • Zhu SJ
        • Wang KJ
        • Gan SW
        • et al.
        Expression of aquaporin 8 in human astrocytomas: correlation with pathologic grade.
        Biochem Biophys Res Commun. 2013; 440: 168-172
        • Warth A
        • Mittelbronn M
        • Hülper P
        • et al.
        Expression of the water channel protein aquaporin-9 in malignant brain tumors.
        Appl Immunohistochem Mol Morphol. 2007; 15: 193-198
        • Tan G
        • Sun SQ
        • Yuan DL.
        Expression of the water channel protein aquaporin-9 in human astrocytic tumours: correlation with pathological grade.
        J Int Med Res. 2008; 36: 777-782
        • Jelen S
        • Parm Ulhøi B
        • Larsen A
        • et al.
        AQP9 expression in glioblastoma multiforme tumors is limited to a small population of astrocytic cells and CD15(+)/CalB(+) leukocytes.
        PLoS One. 2013; 8: e75764
        • McCoy E
        • Sontheimer H.
        Expression and function of water channels (aquaporins) in migrating malignant astrocytes.
        Glia. 2007; 55: 1034-1043
        • Lambertz N
        • Hindy NE
        • Adler C
        • et al.
        Expression of aquaporin 5 and the AQP5 polymorphism A(-1364)C in association with peritumoral brain edema in meningioma patients.
        J Neurooncol. 2013; 112: 297-305
        • Shi Z
        • Zhang T
        • Luo L
        • et al.
        Aquaporins in human breast cancer: identification and involvement in carcinogenesis of breast cancer.
        J Surg Oncol. 2012; 106: 267-272
        • Jung HJ
        • Park JY
        • Jeon HS
        • et al.
        Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells.
        PLoS One. 2011; 6: e28492
        • Lee SJ
        • Chae YS
        • Kim JG
        • et al.
        AQP5 expression predicts survival in patients with early breast cancer.
        Ann Surg Oncol. 2014; 21: 375-383
        • Moon C
        • Sori JC
        • Jang SJ
        • et al.
        Involvement of aquaporins in colorectal carcinogenesis.
        Oncogene. 2003; 22: 6699-6703
        • Yoshida T
        • Hojo S
        • Sekine S
        • et al.
        Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer.
        Mol Clin Oncol. 2013; 1: 953-958
        • Kang SK
        • Chae YK
        • Woo J
        • et al.
        Role of human aquaporin 5 in colorectal carcinogenesis.
        Am J Pathol. 2008; 173: 518-525
        • Wang W
        • Li Q
        • Yang T
        • et al.
        Expression of AQP5 and AQP8 in human colorectal carcinoma and their clinical significance.
        World J Surg Oncol. 2012; 10: 242
        • Shi X
        • Wu S
        • Yang Y
        • et al.
        AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells.
        Tumour Biol. 2014; 35: 7035-7045
        • Fischer H
        • Stenling R
        • Rubio C
        • et al.
        Differential expression of aquaporin 8 in human colonic epithelial cells and colorectal tumors.
        BMC Physiol. 2001; 1: 1
        • Hoque MO
        • Soria JC
        • Woo J
        • et al.
        Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth.
        Am J Pathol. 2006; 168: 1345-1353
        • Machida Y
        • Ueda Y
        • Shimasaki M
        • et al.
        Relationship of aquaporin 1, 3, and 5 expression in lung cancer cells to cellular differentiation, invasive growth, and metastasis potential.
        Hum Pathol. 2011; 42: 669-678
        • Xie Y
        • Wen X
        • Jiang Z
        • et al.
        Aquaporin 1 and aquaporin 4 are involved in invasion of lung cancer cells.
        Clin Lab. 2012; 58: 75-80
        • Liu YL
        • Matsuzaki T
        • Nakazawa T
        • et al.
        Expression of aquaporin 3 (AQP3) in normal and neoplastic lung tissues.
        Hum Pathol. 2007; 38: 171-178
        • Xu H
        • Zhang Y
        • Wei W
        • et al.
        Differential expression of aquaporin-4 in human gastric normal and cancer tissues.
        Gastroenterol Clin Biol. 2009; 33 (1 Pt): 72-76
        • Watanabe T
        • Fujii T
        • Oya T
        • et al.
        Involvement of aquaporin-5 in differentiation of human gastric cancer cells.
        J Physiol Sci. 2009; 59: 113-122
        • Li J
        • Wang Z
        • Chong T
        • et al.
        Over-expression of a poor prognostic marker in prostate cancer: AQP5 promotes cells growth and local invasion.
        World J Surg Oncol. 2014; 12: 284
        • Fabregat G
        • García-de-la-Asunción J
        • Sarriá B
        • et al.
        Expression of aquaporins 1 and 5 in a model of ventilator-induced lung injury and its relation to tidal volume.
        Exp Physiol. 2016; 101: 1418-1431
        • Vassiliou AG
        • Manitsopoulos N
        • Kardara M
        • et al.
        Differential expression of aquaporins in experimental models of acute lung injury.
        In Vivo. 2017; 31: 885-894
        • Song TT
        • Bi YH
        • Gao YQ
        • et al.
        Systemic pro-inflammatory response facilitates the development of cerebral edema during short hypoxia.
        J Neuroinflammation. 2016; 13: 63
        • Marignier R
        • Ruiz A
        • Cavagna S
        • et al.
        Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid.
        J Neuroinflammation. 2016; 13: 111
        • Zhao G
        • Li J
        • Wang J
        • et al.
        Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis.
        Biochem Biophys Res Commun. 2014; 443: 161-166
        • Hansen JJ
        • Holt L
        • Sartor RB.
        Gene expression patterns in experimental colitis in IL-10-deficient mice.
        Inflamm Bowel Dis. 2009; 15: 890-899
        • Hardin JA
        • Wallace LE
        • Wong JF
        • et al.
        Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis, Crohn's disease and infectious colitis.
        Cell Tissue Res. 2004; 318: 313-323
        • Te Velde AA
        • Pronk I
        • de Kort F
        • et al.
        Glutathione peroxidase 2 and aquaporin 8 as new markers for colonic inflammation in experimental colitis and inflammatory bowel diseases: an important role for H2O2?.
        Eur J Gastroenterol Hepatol. 2008; 20: 555-560
        • Fujitsuka N
        • Tamai M
        • Tsuchiya K
        • et al.
        Boiogito, a Kampo medicine, improves hydrarthrosis in a rat model of knee osteoarthritis.
        BMC Complement Altern Med. 2015; 15: 451